[1]
Zhang J A, Yuan L, Fang Z. A New Type of Aerostatic Thrust Bearing with High Stiffness. International Technology and Innovation Conference 2006(Advanced Manufacturing Technologies). Hangzhou: IET, 1996, 1367-1375.
DOI: 10.1049/cp:20061029
Google Scholar
[2]
ZHANG Jun-an, ZHANG Wen-hao, LIAO Bo, LIU Bo. A Study on characteristics of static pressure thrust bearing with variable-section pressure equalizing groove. Tribology. Vol. 29 No. 4 July, 2009. 329-334.
DOI: 10.1049/cp.2009.1396
Google Scholar
[3]
Henshaw W D. Domain decomposion methods for the incompressible Navier-Stokes equations on overlapping grids. Comput Phys, 1994. 113: 13-25.
DOI: 10.1006/jcph.1994.1114
Google Scholar
[4]
Fourka M, Tian Y, Bonis M. Prediction of the stability of air thrust bearing by numerical, analytical and experimental methods. Wear 1996; 198: 1–6.
DOI: 10.1016/0043-1648(95)06782-5
Google Scholar
[5]
Karkoub M, Elkamel A. Modelling, pressure distribution in a rectangular gas bearing using neural networks. Tribol Int 1997; 30(2): 139–50.
DOI: 10.1016/0301-679x(96)00038-2
Google Scholar
[6]
Kassab SZ. Empirical correlations for the pressure depression in externally pressurized gas bearings. Tribol Int 1997; 30(1): 59–67.
DOI: 10.1016/0301-679x(96)00023-0
Google Scholar
[7]
Fourka M, Bonis M. Comparison between externally pressurized gas thrust bearing with different orifice and porous feeding systems. Wear 1997; 210: 311–7.
DOI: 10.1016/s0043-1648(97)00079-3
Google Scholar
[8]
Kotera H, Shima S. Tribol trans: shape optimization to perform prescribed air lubrication using GA. Tribol Trans 2000; 43(4): 837–41.
DOI: 10.1080/10402000008982416
Google Scholar
[9]
Kotera H, Hirasawa T, Senga S, Shimam S. A study on the effect of air on the dynamic motion of MEMS device and its shape optimization. Tribol Trans 2000; 43(4): 842–6.
DOI: 10.1080/10402000008982417
Google Scholar
[10]
Wang N, Chang Y-Z. A hybrid search algorithm for porous air bearing optimisation. Tribol Trans 2002; 45(4): 471–7.
Google Scholar
[11]
Kato T, Soutome H. Friction material design for brake pads using database. Tribol Trans 2001; 44: 137–41.
DOI: 10.1080/10402000108982437
Google Scholar
[12]
Wang N, Chang Y-Z. Application of genetic algorithms to multiobjective optimization of air bearings. Tribol Lett 2004; 17(2): 119–25.
Google Scholar
[13]
Bhat N, Barrans SM. Optimization of journal bearings with the aid of finite element analysis. In: Proceedings of the NAFEMS world congress, 2003. Glasgow: NAFEMS; (2003).
Google Scholar
[14]
Barrans SM, Bhat N, Optimisation of flat pad air bearings with the aid of finite element analysis. In: Proceedings of the seventh international lamdamap conference, 2005. Bedford: Euspen; 2005. p.392–401.
Google Scholar
[15]
Mori H, Miyamatsu Y. Theoretical flow-models for externally pressurized gas bearings. J Lubric Technol 1969; 91(1): 181–93.
DOI: 10.1115/1.3554854
Google Scholar
[16]
Belforte G, Raparelli T, Viktorov V, Trivella A. Discharge coefficients of simple orifices with feed pocket for aerostatic bearings. In: Proceedings of the fourth AIMETA international tribology conference, 14–17 September 2004, Rome, Italy. Aracne Editor. p.467.
DOI: 10.1016/j.triboint.2006.05.003
Google Scholar
[17]
Kassab SZ, Noureldeen EM, Shawky A. Effects of operating conditions and supply hole diameter on the performance of a rectangular aerostatic bearing. Tribol Int 1997; 30(7): 533–45.
DOI: 10.1016/s0301-679x(97)00001-7
Google Scholar