[1]
Zhixing Hu, Ping Bi, et al. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems Series B, 2011, 15(1) 93-112.
Google Scholar
[2]
Wendi Wang, Shigui Ruan. Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Appl. 291(2004) 775-793.
DOI: 10.1016/j.jmaa.2003.11.043
Google Scholar
[3]
G. Li, W. Wang. Bifurcation analysis of an epidemic model with nonlinear incidence rate. Appl. Math. Comput., 214(2009) 411-423.
Google Scholar
[4]
Yu Jin, Wendi Wang, Shiwu Xiao. An SIRS model with a nonlinear incidence rate. Chaos, Solit- ons and Fractals, 34(2007) 1482-1497.
DOI: 10.1016/j.chaos.2006.04.022
Google Scholar
[5]
W. M. Liu, S. A. Levin, Y. Iwasa. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23(1986) 187-204.
DOI: 10.1007/bf00276956
Google Scholar
[6]
Ruan S, Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate. Journal of Differential Equations, 188(2003) 135-163.
DOI: 10.1016/s0022-0396(02)00089-x
Google Scholar
[7]
Dongmei Xiao, Shigui Ruan. Global analysis of an epidemic model with nonmonotone incidence rate. Mathematical Biosciences, 208(2007) 419-429.
DOI: 10.1016/j.mbs.2006.09.025
Google Scholar
[8]
T.K. Kar et al. Modeling and analysis of an epidemic model with non-monotonic incidence rate under treatment. Journal of Mathematics Research, 2010, 2(1) 103-115.
Google Scholar