[1]
R.F. Bunshah (Ed. ), Handbook of Hard Coatings; Deposition Technologies, Properties and Applications, Noyes publications, Park ridge, New Jersey, USA, (2001).
Google Scholar
[2]
M.M. Stack, Y. Purandare, P. Hovsepian, Surf. Coat. Technol. 188-189 (2004) 188.
Google Scholar
[3]
V.I. Gorokhovsky, C. Bowman, P.E. Gannon, D. Van Vorous, A.A. Voevodin, C. Muratore, Y.S. Kang, J.J. Hu, Wear 256 (5-6) (2008) 741.
Google Scholar
[4]
K. Holmberg, A. Matthews, Techniques and Applications in Surface Engineering, Coatings Tribology: Properties, Elsevier, New York, (1994).
Google Scholar
[5]
Veprek S , Nesladek P , Niederhofer A , et al. Surf Coat Tech , 1998 , 108-109 : 138-147.
Google Scholar
[6]
Rauch J Y, Rousselot C , Martin N. [J ] . Surf Coat Technol , 2002 , 157 : 1382143.
Google Scholar
[7]
S. PalDey S.C. Deevi, Mater. Sci. Eng. (2003)34258.
Google Scholar
[8]
Dong Yunshan, Kong Ming, Hu Xiaoping, Li Geyang, Gu Mingyuan. Microstructure and Properties of TiAlSiN Nanocomposite Films Deposited by Reactive Sputtering . Journal of Functional Materials 2005 No. 1 vol 36.
Google Scholar
[9]
C.W. Zou, J. Zhang, W. Xie, L.X. Shao, L.P. Guo, D.J. Fu. Characterization and properties Ti-Al-Si-N nanocomposite coatings prepared by middle frequency magnetron sputtering. Applied Surface Science 257 (2011) 10373-10378.
DOI: 10.1016/j.apsusc.2011.06.086
Google Scholar
[10]
XIE Zhi-wen, WANG Lang-ping, WANG Xiao-feng, HUANG Lei, LU Yang, YAN Jiu-chun. Influence of Si content on structure and mechanical properties of TiAlSiN coatings deposited by multi-plasma immersion ion implantation and deposition. Trans. Nonferrous Met. Soc. China 21(2011).
DOI: 10.1016/s1003-6326(11)61628-2
Google Scholar
[11]
U. Wahlstrom, L. Hultman , J. -E. Sundgren. Crystal growth and microstructure of polycrystalline Ti1-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films, 235 (1993) 62-70.
DOI: 10.1016/0040-6090(93)90244-j
Google Scholar
[12]
Xin Tan, Yuqing Li, Xuejie Liu, Yanhui Xie. Structural and Mechanical Properties of Ti1-xAlxN Studied by ab Initio, Advanced Materials Research Vols. 383-390 (2012) pp.3331-3337.
DOI: 10.4028/www.scientific.net/amr.383-390.3331
Google Scholar
[13]
Marques, L.; Carvalho, S.; Vaz, F.; Ramos, M.M.D.; Rebouta, L. ab-initio Study of the properties of Ti1-x-ySixAlyN solid solution. Vacuum, v 83, n 10, pp.1240-1243, June 16, (2009).
DOI: 10.1016/j.vacuum.2009.03.011
Google Scholar
[14]
R.F. Zhang , S. Veprek . Metastable phases and spinodal decomposition in Ti1−xAlxN system studied by ab initio and thermodynamic modeling, a comparison with the TiN–Si3N4 system. Materials Science and Engineering A 448 (2007) 111-119.
DOI: 10.1016/j.msea.2006.10.012
Google Scholar
[15]
S. Carvalho , E. Ribeiro , L. Rebouta, F. Vaz, E. Alves, D. Schneider, A. Cavaleiro. Effects of the morphology and structure on the elastic ehavior of (Ti, Si, Al)N nanocomposites. Surface and Coatings Technology 174 -175 (2003) 984-991.
DOI: 10.1016/s0257-8972(03)00386-4
Google Scholar
[16]
A.Y. Liu M.L. Cohen, Prediction of New Low Compressibility Solids. Science, 1989, 245: 841-842.
DOI: 10.1126/science.245.4920.841
Google Scholar
[17]
P.W. Shum, K.Y. Li, Z.F. Zhou, Y.G. Shen, Surf. Coat. Technol. 185 (2004) 245.
Google Scholar
[18]
Arya, A.; Carter, Emily A. Source: Journal of Chemical Physics, v 118, n 19, pp.8982-8996, May 15, (2003).
Google Scholar