Asymmetric Change in Three Dimensional Magnetic Fields of Bearing Steel (JIS-SUJ2) under Spherical Hertzian Contact

Article Preview

Abstract:

Flaking failure of bearings is caused by crack growth and stress concentration. The contact conditions between ball, retainer and race affect the durability of the bearings. Non-destructive methods that can be related to contact conditions are necessary to study and understand the phenomena caused by the contact stresses. In the present work, a scanning Hall probe microscope (SHPM) equipped with a GaAs film sensor was used to observe the asymmetric distribution of three-dimensional magnetic fields in bearing steel plates (JIS-SUJ2) before and after light load contact tests of 19.6N. It was found that only vertical components of the magnetic fields are slightly affected by the spherical Hertzian contact. Furthermore, the change in the three-dimensional magnetic fields is asymmetric to the contact center and magnetization center.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1031-1037

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lundberg and A. Palmgren, Dynamic capacity of rolling bearings. Acta Polytechnica, Mechanical Engineering Series, 1 (1947).

Google Scholar

[2] G. Lundberg and A. Palmgren, Dynamic capacity of rolling bearings. Acta Polytechnica, Mechanical Engineering Series, 2 (1952).

Google Scholar

[3] T. A. Harris and J. I. McCool, Trans. ASME, J. Trib., 118, pp.297-310 (1996).

Google Scholar

[4] E. V. Zaretsky, J. V. Poplawski and S. M. Peters, STLE Trib. Trans., 39, pp.501-503 (1996).

Google Scholar

[5] E. V. Zaretsky, R. J. Parker and W. J. Anderson, Trans. ASME J. Lubrication Tech., 91, pp.314-319 (1969).

Google Scholar

[6] N. G. Popinceanu, E. Diaconescu and S. Cretu, Wear, 71, pp.265-282 (1981).

DOI: 10.1016/0043-1648(81)90225-8

Google Scholar

[7] R. S. Zhou, STLE Tribology Trans., 36, pp.329-340 (1993).

Google Scholar

[8] C. A. Moyer, STLE Tribology Trans., 33, pp.535-542 (1990).

Google Scholar

[9] E. Ioannides and T. A. Harris, Trans. ASME, J. Trib., 107, pp.367-378 (1985).

Google Scholar

[10] T. Yamamoto, J. of Japanese Soc. of Tribologists, 42, pp.912-917 (1997).

Google Scholar

[11] K. Kida, K. Yoshidome, K. Yamakawa, H. Harada and N. Oguma, Fatigue & Fracture of Engineering Materials & Structures, 29, pp.1021-1030 (2006). doi: 10. 1111/j. 1460-2695. 2006. 01067. x.

DOI: 10.1111/j.1460-2695.2006.01067.x

Google Scholar

[12] K. Kida, T. Yamazaki, M. Shibata N. Oguma and H. Harada, Fatigue & Fracture of Engineering Materials & Structures, 27, pp.481-493, (2004). doi: 10. 1111/j. 1460-2695. 2004. 00771. x.

DOI: 10.1111/j.1460-2695.2004.00771.x

Google Scholar

[13] Y. Martin and K. H. Wickramasinghe, Appl Phys Lett, 50, pp.1455-1457 (1987).

Google Scholar

[14] Y. Martin, D. Rugar and K.H. Wickramasinghe, Appl Phys Lett, 52, pp.244-246 (1988).

Google Scholar

[15] L. N. Vu, M. S. Wistrom, and D. J. Vanharkingen, Physica B, 194, p.1791 (1994).

Google Scholar

[16] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton and S. J. Wind, Appl Phys Lett, 66, p.1138 (1995).

DOI: 10.1063/1.113838

Google Scholar

[17] K. A. Moler, J. R. Kirtley, R. Liang, D. Bonn and W. H. Hardy, Phys Rev B, 55, p.12753 (1997).

Google Scholar

[18] S. T. Yamamoto and S. Shultz, Appl Phys Lett, 69, p.3263 (1996).

Google Scholar

[19] M. Nakamura, M. Kimura, K. Sueoka and K. Mukasa, Appl Phys Lett, 80, pp.2713-2715 (2002).

Google Scholar

[20] A. M. Chang, H. D. Hallen, L. Harriot, H. F. Hess, H. L. Loa, J. Kao, R. E. Miller and T. Y. Chang, Appl Phys Lett, 61, p.1974, (1992).

Google Scholar

[21] A. Oral, S. J. Bending and M. Henini, J. Vac. Sci. Technol. B, 14, pp.1202-1205 (1996).

Google Scholar

[22] G. D. Howells, A. Oral, S. J. Bending, S. R. Andrews, P. T. Squire, P. Rice, A. de Lozanne, J. A. C. Bland, I. Kaya and M. Henini, J. Magnetism and Magnetic Materials, 196-197, pp.917-919 (1999).

DOI: 10.1016/s0304-8853(98)01002-6

Google Scholar

[23] A. Sandhu, H. Masuda, A. Oral, S. J. Bending, A. Yamada and M. Konagai, Ultromicroscopy, 91, pp.97-101 (2002).

Google Scholar

[24] A. Sandhu, N. Iida, H. Masuda, A. Oral and S. J. Bending, Magnetism and Magnetic Materials, 242-245, pp.1249-1252 (2002).

Google Scholar

[25] A. Sandhu, A. Okamoto, I. Shibasaki and A. Oral, Microelectronic Engineering, 73-74, pp.524-528 (2004).

Google Scholar

[26] Z. Primadani, H. Osawa and A. Sandhu, Journal of Applied Physics, 101, p. 09K105 -3 (2007).

Google Scholar

[27] M. Dede, K. Ürkmen, Ö. Girisen, M. Atabak, A. Oral, I. Farrer and D. Ritchie, Journal of Nanoscience and Nanotechnology, 8, pp.619-622 (2008).

DOI: 10.1166/jnn.2008.a265

Google Scholar

[28] A. Sandhu, H. Masuda, H. Senoguchi and K. Togawa, Nanotechnology, 15, pp. S410-S413 (2004).

Google Scholar

[29] A. Sandhu, K. Kurosawa, M. Dede and A. Oral, Japanese Journal of Applied Physics, 43, pp.777-778 (2004).

Google Scholar

[30] A. Sandhu, H. Masuda, and A. Oral, Journal of Applied Physics, 41, pp. L1402-L1405 (2002).

Google Scholar

[31] K. Kida, H. Okano and H. Tanabe, Fatigue & Fracture of Engineering Materials & Structures, Blackwell, 32, 3, pp.180-188 (2009). doi: 10. 1111/j. 1460-2695. 2008. 01307. x.

DOI: 10.1111/j.1460-2695.2008.01307.x

Google Scholar

[32] K. Kida, E. C. Santos, T. Honda, H. Koike and J. Rozwadowska, Int. Jour. Fatigue (2011, in press). doi: 10. 1016/j. ijfatigue. 2011. 05. 013.

Google Scholar

[33] K. Kida, K, Santos, E. C., Honda, T. Honda and H. Tanabe, Proc. of SPIE-The International Society for Optical, 7522, SPIE 7522-307 (2010).

Google Scholar

[34] T. Honda, K. Kida , E. C. Santos, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials, 83, pp.210-215 (2011). doi: 10. 4028/www. scientific. net/AMM. 83. 210.

DOI: 10.4028/www.scientific.net/amm.83.210

Google Scholar

[35] T. Honda, K. Kida, E. C. Santos and H. Tanabe, Proc. of SPIE-The International Society for Optical, 7522, SPIE 7522-313 (2010).

Google Scholar

[36] K. Kida, E. C. Santos, T. Honda, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials, 83, pp.230-236 (2011). doi: 10. 4028/www. scientific. net/AMM. 83. 230.

DOI: 10.4028/www.scientific.net/amm.83.230

Google Scholar

[37] M. Uryu, K. Kida, T. Honda, E. C. Santos. and K. Saruwatari, Advanced Materials Research, 217-218, pp.1297-1302 (2011). doi: 10. 4028/www. scientific. net/AMR. 217-218. 1302.

DOI: 10.4028/www.scientific.net/amr.217-218.1297

Google Scholar

[38] H. Tanabe, K. Kida, T. Takamatsu, N. Itoh and E.C. Santos, Procedia Engineering, 10, pp.881-886 ( 2011). doi: 10. 1016/j. proeng. 2011. 04. 145.

DOI: 10.1016/j.proeng.2011.04.145

Google Scholar

[39] K. Kida, T. Honda, E. C. Santos, K. Saruwatari, M. Uryu, K. Houri and K. Kanemasu, Advanced Materials Research, 255 - 260, pp.4186-4192. (2011). doi: 10. 4028/www. scientific. net/AMR. 255-260. 4186.

DOI: 10.4028/www.scientific.net/amr.255-260.4186

Google Scholar

[40] K. Kida, M. Uryu, T. Honda, E. C. Santos and K. Saruwatari, Advanced Materials Research, (2011, in press).

Google Scholar