Dynamics Analysis of an SEIQS Model with a Nonlinear Incidence Rate

Article Preview

Abstract:

This paper considers an SEIQS model with nonlinear incidence rate. By means of Lyapunov function and LaSalle’s invariant set theorem, we proved the global asymptotical stable results of the disease-free equilibrium. It is then obtained the sufficent conditions for the global stability of the endemic equilibrium by the compound matrix theory. In addition, we also study the phenomena of limit cycle of the systems with the numerical simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1220-1223

Citation:

Online since:

February 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ying-Hen Hsieh, Chwan-Chuan King, etc., Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study. Journal of Theoretical Biology, 244 (2007) 729-736.

DOI: 10.1016/j.jtbi.2006.09.015

Google Scholar

[2] Hong Xiao, Huaiyu Tian, Lei Shao etc. Spatio-temporal Simulation of Epidemiological SIQR Mo- del Based on the Multi-Agent System with Focus on Influenza A (H1N1). Communications in Computer and Information Science, 107 (2010) 180-189.

DOI: 10.1007/978-3-642-16388-3_20

Google Scholar

[3] W. R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with no- nlinear incidence and nonconstant population, Discrete Contin. Dyn. Syst. Ser. B, 2 (2003) 299-309.

DOI: 10.3934/dcdsb.2003.3.299

Google Scholar

[4] M. E. Alexander, S. M. Moghadas. Bifurcation analysis of an SIRS epidemic model with general- ized incidence, SIAM J. Appl. Math., 65 (2005) 1794–1816.

DOI: 10.1137/040604947

Google Scholar

[5] M. E. Alexander, S. M. Moghadas. Periodicity in an epidemic model with a generalized nonlinear incidence, Math. Biosci, 189 (2004) 75–96.

DOI: 10.1016/j.mbs.2004.01.003

Google Scholar

[6] G. Li, W. Wang. Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Ma- th. Comput, 214 (2009) 411–423.

Google Scholar

[7] Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized nonlinear incidence. Math Biosci , 189 (2004) 75-96.

DOI: 10.1016/j.mbs.2004.01.003

Google Scholar

[8] Yu Jin, Wendi Wang, Shiwu Xiao. An SIRS model with a nonlinear incidence rate. Chaos, Solitons and Fractals, 34 (2007) 1482-1497.

DOI: 10.1016/j.chaos.2006.04.022

Google Scholar

[9] Hale JK. Ordinary differential equations. New York: Wiley-Interscie- nce, 1969 pp.296-7.

Google Scholar

[10] Li MY, Muldowney JS. A geometric approach to the global-stability problems. SIAM J Math Anal, 7 (1996) 1070-1083.

DOI: 10.1137/s0036141094266449

Google Scholar

[11] Martin Jr R H. Logarithmic norms and projections applied to linear differential systems. J Math Anal Appl, , 45(2), (1974) 432-454.

Google Scholar

[12] Na YI, Zhiwu ZHAO, Qingling ZHANG. Bifurcations of an SEIQS epidemic model. Internat- ional Journal of Information and Systems Sciences. 5(3-4), (2009) 296-310.

Google Scholar