[1]
Ying-Hen Hsieh, Chwan-Chuan King, etc., Impact of quarantine on the 2003 SARS outbreak: A retrospective modeling study. Journal of Theoretical Biology, 244 (2007) 729-736.
DOI: 10.1016/j.jtbi.2006.09.015
Google Scholar
[2]
Hong Xiao, Huaiyu Tian, Lei Shao etc. Spatio-temporal Simulation of Epidemiological SIQR Mo- del Based on the Multi-Agent System with Focus on Influenza A (H1N1). Communications in Computer and Information Science, 107 (2010) 180-189.
DOI: 10.1007/978-3-642-16388-3_20
Google Scholar
[3]
W. R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with no- nlinear incidence and nonconstant population, Discrete Contin. Dyn. Syst. Ser. B, 2 (2003) 299-309.
DOI: 10.3934/dcdsb.2003.3.299
Google Scholar
[4]
M. E. Alexander, S. M. Moghadas. Bifurcation analysis of an SIRS epidemic model with general- ized incidence, SIAM J. Appl. Math., 65 (2005) 1794–1816.
DOI: 10.1137/040604947
Google Scholar
[5]
M. E. Alexander, S. M. Moghadas. Periodicity in an epidemic model with a generalized nonlinear incidence, Math. Biosci, 189 (2004) 75–96.
DOI: 10.1016/j.mbs.2004.01.003
Google Scholar
[6]
G. Li, W. Wang. Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Ma- th. Comput, 214 (2009) 411–423.
Google Scholar
[7]
Alexander ME, Moghadas SM. Periodicity in an epidemic model with a generalized nonlinear incidence. Math Biosci , 189 (2004) 75-96.
DOI: 10.1016/j.mbs.2004.01.003
Google Scholar
[8]
Yu Jin, Wendi Wang, Shiwu Xiao. An SIRS model with a nonlinear incidence rate. Chaos, Solitons and Fractals, 34 (2007) 1482-1497.
DOI: 10.1016/j.chaos.2006.04.022
Google Scholar
[9]
Hale JK. Ordinary differential equations. New York: Wiley-Interscie- nce, 1969 pp.296-7.
Google Scholar
[10]
Li MY, Muldowney JS. A geometric approach to the global-stability problems. SIAM J Math Anal, 7 (1996) 1070-1083.
DOI: 10.1137/s0036141094266449
Google Scholar
[11]
Martin Jr R H. Logarithmic norms and projections applied to linear differential systems. J Math Anal Appl, , 45(2), (1974) 432-454.
Google Scholar
[12]
Na YI, Zhiwu ZHAO, Qingling ZHANG. Bifurcations of an SEIQS epidemic model. Internat- ional Journal of Information and Systems Sciences. 5(3-4), (2009) 296-310.
Google Scholar