Optimization of Combined Microwave-Ultrasonic Wave Extraction of Cochineal Dye by Response Surface Methodology

Article Preview

Abstract:

For more efficient and economical extraction of cochineal dye, combined microwave-ultrasonic wave extraction was applied. It was approached 4 factors as microwave power, treated time, materials-to-liquid ratio and ultrasonic wave power. Results showed that the optimal condition individually for cochineal dye extraction was at 400W microwave power, 17min treated time, 1:8 materials-to-liquid ratio and 600W ultrasonic wave power. On the basis of single factor test, RSM optimization of the extraction was achieved at 464W microwave power, 18.48min treated time, 1:8.23 materials-to-liquid ratio and 627W ultrasonic wave power. The verification was very approximate to the predicted value from the modelling regression equation. And the best extraction grade was tesified as 4 times.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

March 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. H. Zhang, X. Z. Yang, Z. L. Wang, et al, Study on experimental population of cochineal insect (D. Confusus (Cockerell)). Fore. Res. 16 (3) (2003) 254–261.

Google Scholar

[2] Z. H. Zhang, L. Shi, L. F. Xu, et al, The present research and utilization situation of cochineal insects in the world. Fore. Res. 15 (6) (2002) 719–726.

Google Scholar

[3] E. A. González, E. M. García, M. A. Nazareno. Free radical scavenging capacity and antioxidant activity of cochineal (Dactylopius coccus C.) extracts, Food Chem. 119 (1) (2010) 358–362.

DOI: 10.1016/j.foodchem.2009.06.030

Google Scholar

[4] Y. H. Guo, L. Y. Ma, H. Zheng, et al, Free radical scavenging capacity of carminic acid. Food Sci. 31 (17) (2010) 73–76.

Google Scholar

[5] J. Méndez, M. González, M. G. Lobo, et al, Color quality of pigments in cochineals (Dactylopius coccus Costa). J. Agr. Food Chem. 52 (5) (2004) 1331–1337.

DOI: 10.1021/jf0348929

Google Scholar

[6] E. Takahashi, T. H. Marczylo, T. Watanabe, et al, Preventive effects of anthraquinone food pigments on the DNA damage induced by carcinogens in Drosophila. Mut. Res./ Fund. Mole. Mech. Mutag. 480-481 (2001) 139–145.

DOI: 10.1016/s0027-5107(01)00177-4

Google Scholar

[7] H. K. L. Gupta, D. F. Boltz, Spectrophotometric study of the determination of boron by the carminic acid method. Microchimica Acta 62 (3) (1974) 415–428.

DOI: 10.1007/bf01219720

Google Scholar

[8] L. López-Martínez, J. L. Guzmán-Mar, P. L. López-de-Alba, Simultaneous determination of uranium(Ⅵ) and thorium(Ⅳ) ions with carminic acid by bivariate calibration. J. Radioanal. Nuc. Chem. 247 (2) (2001) 413–417.

DOI: 10.1023/a:1006786525345

Google Scholar

[9] J. L. Manzoori, M. H. Soroiraddin, M. Amjadi, Spectrophotometric determination of osmium based on its catalytic effect on the oxidation of carminic acid by hydrogen peroxide. Talanta 53 (1) (2000) 61–68.

DOI: 10.1016/s0039-9140(00)00383-0

Google Scholar

[10] S. Gaweda, G. Stochel, K. Szaciliwski, Photosensitization and photocurrent switching in car- minic acid/ titanium dioxide hybrid material. J. Phys. Chem. C 112 (48) (2008) 19131–19141.

DOI: 10.1021/jp804700d

Google Scholar

[11] H. Zhang, Y. M. Lu, H. Zheng, et al, Optimization of water extraction of cochineal dye. Food Sci. 30 (16) (2009) 115–118.

Google Scholar

[12] Y. Cui, W. H. Li, X. Tang, et al, Study on extracting pigment from cochineal insect. Chem. Engin. 35 (6) (2007) 66–69.

Google Scholar

[13] M. Gonzaälez, J. Meändez, A. Carnero, Optimizing conditions for the extraction of pigments in cochineals (Dactylopius coccus Costa) using response surface methodology. J. Agr. Food Chem. 50 (24) (2002) 6968–6974.

DOI: 10.1021/jf025756r

Google Scholar

[14] Y. M. Lu, H. Zheng, H. Zhang, et al, Ultrasonic extraction of cochineal dye. Food Sci. 30 (16) (2009) 142–145.

Google Scholar

[15] Y. M. Lu, H. Zheng, M. C. Zhou, et al, Study on extraction of cochineal dye by microwave technique. Hubei Agr. Sci. 48 (3) (2009) 707–709.

Google Scholar

[16] Y. H. Guo, L. Y. Ma, H. Zheng, et al, Comparison of HPLC and spectrophotometric methods for quantitative analysis of carminic acid. Food Sci. 30 (18) (2009) 303–306.

Google Scholar

[17] G. M. Zhao, G. H. Zhou, X. L. Xu, et al, Changes of dipeptidyl peptidase Ⅳ in the processing of Jinhua Ham. Scientia Agricultura Sinica 38 (1) (2005) 151–156.

Google Scholar

[18] J. Jia, L. Yang, Y. G. Zu, Homogenated extraction of oligomeric proanthocyanidins from larch bark and its optimization by response surface methodology. Chem. Indus. Fore. Prod. 29 (2009) 78–84.

Google Scholar

[19] X. J. Shang, J. Q. Qian, H. Guo, Optimazation of extraction of alkaloids from Corydalis yanhu- suo W. T. Wang by response surface methodology. Chem. Indus. Fore. Prod. 30 (2010) 32–36.

Google Scholar

[20] L. Yang, Z. Y. Wang, Optimization of the processing parameters for extraction of antioxidants from blackberry using response surface methodology. Chem. Indus. Fore. Prod. 30 (2010) 67–72.

Google Scholar