[1]
Weiping Zhang. The corrosion damage of reinforced prediction in concrete structure and durability assessment (PhD thesis). Tongji University, 1999. (In Chinese)
Google Scholar
[2]
Yunling Hui. The extent of corrosion of reinforced in concrete structures and prediction of experimental studies .Industrial buildings, 1996,26 (4): 11-13. (In Chinese)
Google Scholar
[3]
Haibin Chen, Ditao Niu, Jinxiu Pu. Assessment the amount of reinforced corrosion in concrete using artificial neural network technology, 1999 (2): 51-55. (In Chinese)
Google Scholar
[4]
Hui Dong, Helin Fu, etc. Predicted landslide displacement based on Takens theory and SVM, China Journal of Highway, 2007,9 (20 Volume 5): 13-18. (In Chinese)
Google Scholar
[5]
Ditao Niu. Durability and lifetime prediction of concrete structures, Science Press, 2002,10. (In Chinese) Table 1 Sample (learning set)
Sample No.
w[mm]
fcuk[Mpa]
c[mm]
d[mm]
ηc
ηj
ηc/ηj
1
0.180
21.21
15.0
22
6.84
6.89
2
0.250
21.63
17.0
20
14.51
14.46
3
0.333
26.58
30.0
18
24.53
24.48
4
0.667
29.86
30.0
22
35.64
35.59
5
0.500
22.34
55.0
30
15.70
15.65
6
0.750
31.76
14.0
30
4.00
4.05
7
0.667
21.21
30.0
25
35.30
35.25
8
1.100
25.68
15.0
20
14.80
14.75
9
0.667
20.31
12.0
25
18.60
18.55
10
0.667
23.88
16.0
25
21.10
21.05
11
0.850
18.00
17.3
12
7.04
7.09
12
2.000
18.00
15.4
12
9.60
9.65
13
1.800
18.00
12.1
12
4.20
4.25
14
0.500
18.00
14.8
12
10.92
10.97
15
0.500
20.00
20.0
8
9.70
9.75
16
0.225
20.00
20.0
8
14.45
14.4
17
0.300
20.00
40.0
12
7.33
7.38
18
0.350
10.00
20.0
12
8.52
8.57
19
0.250
20.00
10.0
12
6.37
6.42
20
1.150
18.00
15.7
12
6.72
6.77
21
0.300
20.00
20.0
12
4.88
4.93
Table 2 Support vector machine regression test results
Sample No.
W[mm]
fcuk[Mpa]
c[mm]
d[mm]
ηc
ηj
ηc/ηj
1
0.700
28.31
30.0
25
21.2
21.15
1.002
2
0.500
22.31
33.5
30
13.1
13.15
0.996
3
0.200
21.21
20.0
20
7.44
7.49
0.993
4
1.000
21.64
30.0
28
20.6
20.55
1.002
5
0.600
30.54
18.0
12
14.05
14
1.004
6
0.900
18.00
13.1
12
7.68
7.73
0.994
7
1.500
18.00
11.7
12
8.32
8.37
0.994
8
0.300
20.00
20.0
16
5.85
5.9
0.992
9
0.500
20.00
40.0
12
6.39
6.44
0.992
10
0.400
20.00
10.0
12
7.9
7.85
1.006
Mean
0.998
Table 3 Neural network test results
Sample No.
w/mm
fcuk[Mpa]
c[mm]
d[mm]
ηc
ηj
ηc/ηj
1
0.700
28.31
30.0
25
21.2
26.35
0.805
2
0.500
22.31
33.5
30
13.1
15.39
0.851
3
0.200
21.21
20.0
20
7.44
5.52
1.348
4
1.000
21.64
30.0
28
20.6
21.72
0.948
5
0.600
30.54
18.0
12
14.05
23.95
0.587
6
0.900
18.00
13.1
12
7.68
7.91
0.971
7
1.500
18.00
11.7
12
8.32
7.13
1.167
8
0.300
20.00
20.0
16
5.85
5.58
1.048
9
0.500
20.00
40.0
12
6.39
10.56
0.605
10
0.400
20.00
10.0
12
7.9
7.74
1.021
Mean
0.935 Table 4 Linear regression test results
Sample No.
w/mm
fcuk[Mpa]
c[mm]
d[mm]
ηc
ηj
ηc/ηj
1
0.700
28.31
30.0
25
21.2
19.98
1.061
2
0.500
22.31
33.5
30
13.1
18.96
0.691
3
0.200
21.21
20.0
20
7.44
12.70
0.586
4
1.000
21.64
30.0
28
20.6
17.87
1.153
5
0.600
30.54
18.0
12
14.05
14.88
0.944
6
0.900
18.00
13.1
12
7.68
8.07
0.952
7
1.500
18.00
11.7
12
8.32
8.39
0.992
8
0.300
20.00
20.0
16
5.85
10.94
0.535
9
0.500
20.00
40.0
12
6.39
13.28
0.481
10
0.400
20.00
10.0
12
7.9
8.07
0.979
Mean
0.837
Google Scholar