[1]
X.P. Zheng, T.K. Zhong and M.T. Liu. Modelling crowd evacuation of a building based on seven methodological approaches. Building and Environment, Vol. 44 (3) (2009), p.437.
DOI: 10.1016/j.buildenv.2008.04.002
Google Scholar
[2]
X.P. Zheng, J.H. Sun and Y. Cheng. Analysis of crowd jam in public buildings based on cusp-catastrophe theory. Building and Environment, Vol. 45 (8) (2010), p.1755.
DOI: 10.1016/j.buildenv.2010.01.027
Google Scholar
[3]
A. Varas, M.D. Cornejo, D. Mainemer, B. Toledo, J. Rogan, V. Munoz and J.A. Valdivia. Cellular automaton model for evacuation process with obstacles. Physica A: Statistical Mechanics and its Applications, Vol. 382 (2) (2007), p.631.
DOI: 10.1016/j.physa.2007.04.006
Google Scholar
[4]
R. Alizadeh. A dynamic cellular automaton model for evacuation process with obstacles. Safety Science, Vol. 49 (2) (2011), p.315.
DOI: 10.1016/j.ssci.2010.09.006
Google Scholar
[5]
N.J. Von and A.W. Burks: Theory of self-reproduction automata (Urbana: University of Illinois Press, 1966).
Google Scholar
[6]
G.B. Ermentrout, L. Edelstein-Keshet. Cellular automata approaches to biological modeling. Journal of Theoretical Biology, Vol. 160 (1993), p.97.
DOI: 10.1006/jtbi.1993.1007
Google Scholar
[7]
S. Wolfram. Cellular automata fluids: Basic theory. Journal of Statistical Physics, Vol. 45 (3-4) (1986), p.471.
Google Scholar
[8]
J. Liu, W. Yuan. Application of evacuation modeling in fire safety design. The Fourth International Conference on Protection of Structures against Hazards, Beijing, China (2009).
Google Scholar
[9]
X.M. Zhao, Z.Y. Gao and B. Jia. The capacity drop caused by the combined effect of the intersection and the bus stop in a CA model. Physica A: Statistical Mechanics and its Applications, Vol. 385 (2) (2007), p.645.
DOI: 10.1016/j.physa.2007.07.040
Google Scholar
[10]
N. Boccara, H. Fuks and Q. Zeng. Car accidents and number of stopped cars due to road blockage on a one-lane highway. Journal of Physics A: Mathematical and General, Vol. 30 (10) (1997), p.3329.
DOI: 10.1088/0305-4470/30/10/012
Google Scholar
[11]
N. Boccara. On the existence of a variational principle for deterministic cellular automaton models of highway traffic flow. International Journal of Modern Physics C, Vol. 12 (2) (2001), p.143.
DOI: 10.1142/s0129183101001596
Google Scholar
[12]
X.P. Zheng, W. Li and C. Guan. Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications, Vol. 389 (11) (2010), p.2177.
DOI: 10.1016/j.physa.2010.01.048
Google Scholar
[13]
W.F. Fang, L.Z. Yang and W.C. Fan, Simulation of bi-direction pedestrian movement using a cellular automata model. Physica A: Statistical Mechanics and its Applications, Vol. 321 (3-4) (2003), p.633.
DOI: 10.1016/s0378-4371(02)01732-6
Google Scholar
[14]
W.G. Weng, T. Chen, H.Y. Yuan and W.C. Fan. Cellular automaton simulation of pedestrian counter flow with different walk velocities. Physical Review E, Vol. 74 (3) (2006), 036102: 1-7.
DOI: 10.1103/physreve.74.036102
Google Scholar
[15]
L.Z. Yang, D.L. Zhao, J. Li and T.Y. Fang. Simulation of the kin behavior in building occupant evacuation based on cellular automaton. Building and Environment, Vol. 40 (3) (2005), p.411.
DOI: 10.1016/j.buildenv.2004.08.005
Google Scholar
[16]
W.F. Yuan and K.H. Tan. An evacuation model using cellular automata. Physica A: Statistical Mechanics and its Applications, Vol. 384 (2) (2007), p.549.
DOI: 10.1016/j.physa.2007.05.055
Google Scholar
[17]
K.E. Bizovi and J.D. Leikin. Smoke inhalation among firefighters. Occupational Medicine, Vol. 10 (4) ( 1995), p.721.
Google Scholar
[18]
The report of the national commission on fire prevention and control. America Burning, U.S. Government Printing Office, Washington, DC 20402 (1973).
Google Scholar
[19]
T. Jin and T. Yamada. Experimental study of human behaviour in smoke-filled corridors. Fire Safety Science-Proceedings of the Second International Symposium, Hemisphere, Washungton. (1989), p.511.
DOI: 10.3801/iafss.fss.2-511
Google Scholar
[20]
W.F. Yuan and K.H. Tan. A novel algorithm of simulating multi-velocity evacuation based on cellular automata modelling and tenability condition. Physica A: Statistical Mechanics and its Applications, Vol. 379 (1) (2007), p.250.
DOI: 10.1016/j.physa.2006.12.044
Google Scholar
[21]
W.F. Yuan and K.H. Tan. Cellular automata model for simulation of effect of guiders and visibility range. Current Applied Physics, Vol. 9 (5) (2009), p.1014.
DOI: 10.1016/j.cap.2008.10.007
Google Scholar
[22]
T. Jin. Visibility and human behaviour in fire smoke. The SFPE Handbook of Fire Protection Engineering, 3rd edition, NFPA, MA, USA (2002) 2-42-2-53.
Google Scholar
[23]
T. Jin. Visibility through fire smoke. Journal of Fire and Flammability, Vol. 9 (1978), p.135.
Google Scholar
[24]
G.E. Mulholland. Smoke production and properties. The SFPE Handbook of Fire Protection Engineering, 2nd edition (1995) 2-217-2-227.
Google Scholar
[25]
C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz. Simulation of pedestrian dynamics using a two-dimensional cellular automata. Physica A: Statistical Mechanics and its Applications, Vol. 295 (3-4) (2001), p.507.
DOI: 10.1016/s0378-4371(01)00141-8
Google Scholar