Strain Gauge Based on Graphene

Article Preview

Abstract:

In this paper, graphene grown by Chemical vapor deposition (CVD) on a Cu foil in a cold-wall furnace was used to fabrication the graphene strain gauge. The graphene membrane was patterned to wire grid shape on the Cu substrate by photolithography method in the clean room. The pattern was transferred to PDMS substrate and seal by it also to make graphene in a stable surroundings. Through the standard calibration, it was calculated that the linearity and multiplicity of the graphene strain gauge both were 0.0076%F.S.. Which indicated the good quality of the gauge. The gauge factor was 2.4, as the highest value as that of the alloy strain gauge. We also find the graphene strain gauge output increase proportionally with increasing curvature of its deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2918-2923

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. R. Dreyer, R. S. Ruoff and C. W. Bielawski, From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future, Angew Chem Int Edit, 49(2010), No.49, pp.9336-9344.

DOI: 10.1002/anie.201003024

Google Scholar

[2] Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications (vol 22, pg 3906, 2010), Advanced Materials, 22(2010), No.46, pp.5226-5226.

DOI: 10.1002/adma.201090156

Google Scholar

[3] X. Du, I. Skachko, A. Barker and E. Y. Andrei, Approaching ballistic transport in suspended graphene, Nat Nano, 3(2008), No.8, pp.491-495.

DOI: 10.1038/nnano.2008.199

Google Scholar

[4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, 8(2008), No.3, pp.902-907.

DOI: 10.1021/nl0731872

Google Scholar

[5] W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett, 10(2010), No.5, pp.1645-51.

DOI: 10.1021/nl9041966

Google Scholar

[6] C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321(2008), No.5887, pp.385-388.

DOI: 10.1126/science.1157996

Google Scholar

[7] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande and P. L. McEuen, Mechanical properties of suspended graphene sheets, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(2007), No.6, p.2558.

DOI: 10.1116/1.2789446

Google Scholar

[8] W. Yanjie, M. Congqin, H. Bo-chao, Z. Jing, L. Wei, P. Youngju, X. Ya-hong and J. C. S. Woo, Scalable Synthesis of Graphene on Patterned Ni and Transfer, Electron Devices, IEEE Transactions on, 57(2010), No.12, pp.3472-3476.

DOI: 10.1109/ted.2010.2076337

Google Scholar

[9] A. Ghosh, D. J. Late, L. S. Panchakarla, A. Govindaraj and C. N. R. Rao, NO2 and humidity sensing characteristics of few-layer graphenes, J Exp Nanosci, 4(2009), No.4, pp.313-322.

DOI: 10.1080/17458080903115379

Google Scholar

[10] S. Chen, W. Cai, D. Chen, Y. Ren, X. Li, Y. Zhu and R. S. Ruoff, Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene, New Journal of Physics, 12(2010), No.12, p.125011.

DOI: 10.1088/1367-2630/12/12/125011

Google Scholar

[11] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 332(2011), No.6037, pp.1537-1541.

DOI: 10.1126/science.1200770

Google Scholar

[12] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science, 324(2009), No.5932, pp.1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[13] W. W. Cai, R. D. Piner, Y. W. Zhu, X. S. Li, Z. B. Tan, H. C. Floresca, C. L. Yang, L. Lu, M. J. Kim and R. S. Ruoff, Synthesis of Isotopically-Labeled Graphite Films by Cold-Wall Chemical Vapor Deposition and Electronic Properties of Graphene Obtained from Such Films, Nano Res., 2(2009), No.11, pp.851-856.

DOI: 10.1007/s12274-009-9083-y

Google Scholar

[14] J. Cho, L. Gao, J. Tian, H. Cao, W. Wu, Q. Yu, E. N. Yitamben, B. Fisher, J. R. Guest, Y. P. Chen and N. P. Guisinger, Atomic-Scale Investigation of Graphene Grown on Cu Foil and the Effects of Thermal Annealing, ACS Nano, 5(2011), No.5, p.3607–3613.

DOI: 10.1021/nn103338g

Google Scholar

[15] Z. Li, P. Wu, C. Wang, X. Fan, W. Zhang, X. Zhai, C. Zeng, Z. Li, J. Yang and J. Hou, Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources, ACS Nano, 5(2011), No.4, pp.3385-3390.

DOI: 10.1021/nn200854p

Google Scholar

[16] P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen and D. A. Muller, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature, 469(2011), No.7330, pp.389-392.

DOI: 10.1038/nature09718

Google Scholar

[17] A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu and J. Kong, Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates, Journal of Physical Chemistry C, 112(2008), No.46, pp.17741-17744.

DOI: 10.1021/jp807380s

Google Scholar

[18] X. Li, W. Cai, I. H. Jung, J. H. An, D. Yang, A. Velamakanni, R. Piner, L. Colombo and R. S. Ruoff, Synthesis, Characterization, and Properties of Large-Area Graphene Films, ECS Transactions, 19(2009), No.5, pp.41-52.

DOI: 10.1149/1.3119526

Google Scholar

[19] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, 9(2009), No.12, pp.4359-4363.

DOI: 10.1021/nl902623y

Google Scholar

[20] W. Regan, N. Alem, B. Aleman, B. S. Geng, C. Girit, L. Maserati, F. Wang, M. Crommie and A. Zettl, A direct transfer of layer-area graphene, Applied Physics Letters, 96(2010), No.11.

DOI: 10.1063/1.3337091

Google Scholar

[21] Y. Ren, S. Chen, W. Cai, Y. Zhu, C. Zhu and R. S. Ruoff, Controlling the electrical transport properties of graphene by in situ metal deposition, Applied Physics Letters, 97(2010), No.5, p.053107.

DOI: 10.1063/1.3471396

Google Scholar

[22] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials, 6(2007), No.9, pp.652-655.

DOI: 10.1038/nmat1967

Google Scholar

[23] Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong and J. H. Ahn, Wafer-Scale Synthesis and Transfer of Graphene Films, Nano Letters, 10(2010), No.2, pp.490-493.

DOI: 10.1021/nl903272n

Google Scholar

[24] W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen and R. S. Ruoff, Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide, Science, 321(2008), No.5897, pp.1815-1817.

DOI: 10.1126/science.1162369

Google Scholar

[25] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, 97(2006), No.18, p.187401.

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[26] A. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications, 143(2007), No.1-2, pp.47-57.

DOI: 10.1016/j.ssc.2007.03.052

Google Scholar

[27] I. Jung, D. Dikin, S. Park, W. Cai, S. L. Mielke and R. S. Ruoff, Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets, Journal of Physical Chemistry C, 112(2008), No.51, pp.20264-20268.

DOI: 10.1021/jp807525d

Google Scholar