[1]
R. Camassa, D.D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71(1993), 1661-1664.
DOI: 10.1103/physrevlett.71.1661
Google Scholar
[2]
H.R. Dullin, G.A. Gottwald, D.D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett. 87 (2001), 194501-194504.
DOI: 10.1103/physrevlett.87.194501
Google Scholar
[3]
H.R. Dullin, G.A. Gottwald, D.D. Holm, On asymptotically equivalent shallow water wave equations, Physica D, 190(2004), 1-14.
DOI: 10.1016/j.physd.2003.11.004
Google Scholar
[4]
B. He, J.B. Li, et al., Bifurcations of travelling wave solutions for the CH-DP equation, Nonlinear Anal.: Real World Appl. 9(2008), 222-232.
Google Scholar
[5]
D.D. Holm, M.F. Staley, Nonlinear balance and exchange of stability in dynamics of solitons,peakons,ramps/cliffs and leftons in a 1+1 nonlinear evolutionary PDE, Phys. Lett. A, 308(2003), 437-444.
DOI: 10.1016/s0375-9601(03)00114-2
Google Scholar
[6]
D.D. Holm, M.F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs, SIAM J. Appl. Dyn. Syst. 2(2003), 323-380.
DOI: 10.1137/s1111111102410943
Google Scholar
[7]
A.M. Wazwaz, The tanh method for travelling wave solutions of nonlinear equations. Appl Math Comput, 154(3)(2004), 713-718.
Google Scholar
[8]
J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations. Chaos Soliton Fract, 30(2006), 700-706.
Google Scholar
[9]
L. Wei, Exact solutions to a combined sinhCcosh-Gordon equation, Commun. Theor. Phys. 54 (2010), 599-602.
DOI: 10.1088/0253-6102/54/4/03
Google Scholar
[10]
C.T. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224(1996), 77-82.
Google Scholar
[11]
S. Liao, An explicit analytic solution to the Thomas-Fermi equation, Appl. Math. Comput., 144(2003), 2-3.
Google Scholar
[12]
D.S. Wang, H.B. Li, Elliptic equations new solutions and their applications to two nonlinear partial differential equations, Appl. Math. Comput. 188 (2007), 762-771.
DOI: 10.1016/j.amc.2006.10.026
Google Scholar
[13]
W. Malfliet, The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math.,164(2004), 529-541.
DOI: 10.1016/s0377-0427(03)00645-9
Google Scholar
[14]
S.K. Liu, S.D. Liu, Nonlinear Equat ions in Physics [M], Beijing: Peking University Press, 2000.
Google Scholar