[1]
Pock, T., et al., A duality based algorithm for TV-L1-optical-flow image registration, in Proceedings of the 10th international conference on Medical image computing and computer-assisted intervention. 2007, Springer-Verlag: Brisbane, Australia. pp.511-518.
DOI: 10.1007/978-3-540-75759-7_62
Google Scholar
[2]
Werlberger, M., et al., Anisotropic Huber-L1 Optical Flow. 2009: p.108.1-108.11.
Google Scholar
[3]
Thirion, J.P., Image matching as a diffusion process: an analogy with Maxwell's demons. Medical Image Analysis, 1998. 2(3): pp.243-60.
DOI: 10.1016/s1361-8415(98)80022-4
Google Scholar
[4]
Gu, X., et al., Implementation and evaluation of various demons deformable image registration algorithms on a GPU. Physics in Medicine and Biology, 2010. 55(1): pp.207-219.
DOI: 10.1088/0031-9155/55/1/012
Google Scholar
[5]
Wang, H., et al., Validation of an accelerated 'demons' algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005. 50(12): pp.2887-2905.
DOI: 10.1088/0031-9155/50/12/011
Google Scholar
[6]
Vercauteren, T., et al., Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 2009. 45(1, Supplement 1): p. S61-S72.
DOI: 10.1016/j.neuroimage.2008.10.040
Google Scholar
[7]
John, A., A fast diffeomorphic image registration algorithm. NeuroImage, 2007. 38(1): pp.95-113.
DOI: 10.1016/j.neuroimage.2007.07.007
Google Scholar
[8]
Jacobson, T.J. and M.J. Murphy, Optimized knot placement for B-splines in deformable image registration. Medical physics, 2011. 38(8): pp.4579-82.
DOI: 10.1118/1.3609416
Google Scholar
[9]
Farah, J., D. Broggio, and D. Franck, Examples of Mesh and NURBS modelling for in vivo lung counting studies. Radiation protection dosimetry, 2011. 144(1-4): pp.344-8.
DOI: 10.1093/rpd/ncq313
Google Scholar
[10]
Garcia-Perez, V., A. Tristan-Vega, and S. Aja-Fernandez, NURBS for the geometrical modeling of a new family of Compact-Supported Radial Basis Functions for elastic registration of medical images. IEEE Engineering in Medicine and Biology Society. Conference, 2010. 2010: pp.5947-50.
DOI: 10.1109/iembs.2010.5628055
Google Scholar
[11]
Yongchoel, C. and L. Seungyong. Local injectivity conditions of 2D and 3D uniform cubic B-spline functions. in Computer Graphics and Applications, 1999. Proceedings. Seventh Pacific Conference on. 1999.
DOI: 10.1109/pccga.1999.803374
Google Scholar