Application of Neural Network in Identifying Soil Strata by CPT or CPTU Data

Article Preview

Abstract:

In geotechnical engineering, assessment of the depth location of stratigraphic interfaces and the depth and thickness of thin layers can be critical in the design process. For example, stratigraphic interfaces can promote anisotropic soil strength response and potentially provide preferential slip planes that create slope instability. Similarly, the presence of thin, high permeability layers can alter groundwater flow regimes and rates of consolidation, which can hinder or accelerate methods of ground improvement. The piezocone penetration test (PCPT or CPTU) is an extension of the cone penetration test (CPT) and is able to measure cone tip resistance, sleeve friction and generated pore-water pressures simultaneously. The piezocone’s functionality is through the measured excess pore pressure profile, which reflects changes in the drainage conditions, and therefore soil conditions. In this paper the relationship between CPTU parameters and soil types and strata is analyzed, and the structure of a general regression neural network (GRNN) is designed, and the application program is programmed with MATLAB language. The results, identifying soil strata by CPTU, have confirmed that GRNN can be used to carry out the automatically identifying soil strata.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

945-949

Citation:

Online since:

May 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lunne, T., Robertson, P.K. and Powell, J.J.M., "Cone penetration testing in geotechnical practice", 1997, Blackie Academic and Professional, London.

DOI: 10.1201/9781482295047

Google Scholar

[2] Douglas, J.B. and Olsen, R.S., "Soil classification using electric cone penetrometer", Proc., Conference on Cone Penetration Testing and Experience, American Society of Civil Engineers, St. Louis, October 26–30, 1981, pp.209-227.

Google Scholar

[3] Senneset, K. and Janbu, N., "Shear strength parameters obtained from static cone penetration tests", Proc., Strength Testing of Marine Sediments; Laboratory and In situ Measurement, ASTM Special Technical Publication, STP 883, 1985, pp.41-54.

DOI: 10.1520/stp36328s

Google Scholar

[4] Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J., "Use of piezometer cone data", Proc., ASCE Specialty Conference on In Situ'86: Use of In Situ Tests in Geotechnical Engineering, Blacksburg, Va., 1986, pp.1263-1280.

Google Scholar

[5] Robertson, P.K., "Soil classification using the cone penetration test", Canadian Geotechnical Journal, 27(1), 1990, pp.151-158.

DOI: 10.1139/t90-014

Google Scholar

[6] Robertson, P.K., "Interpretation of cone penetration tests - a unified approach", Canadian Geotechnical Journal, 46(9), 2009, pp.1337-1355.

DOI: 10.1139/t09-065

Google Scholar

[7] Kurup, P.U. and Griffin, E.P., "Prediction of soil composition from CPT data using general regression neural network", Journal of Computing in Civil Engineering, 20(4), 2006, pp.281-289.

DOI: 10.1061/(asce)0887-3801(2006)20:4(281)

Google Scholar

[8] Olsen, R.S. and Malone, P.G., "Soil classification and site characterization using the cone penetrometer test", Penetration testing 1988, Proc., First Int. Symp. on Penetration Testing ISOPT-1, J. De Ruiter, ed., A. A. Balkema, Rotterdam, The Netherlands, 1988, pp.887-893.

Google Scholar

[9] Jefferies, M.G. and Davies, M.P., "Soil classification using the cone penetration test (Discussion)", Canadian Geotechnical Journal, 28(1), 1991, pp.173-176.

DOI: 10.1139/t91-023

Google Scholar

[10] Eslami, A. and Fellenius, B.H., "Pile capacity by direct CPT and PCPT methods applied to 102 case histories", Canadian Geotechnical Journal, 34(6), 1997, pp.880-898.

DOI: 10.1139/t97-056

Google Scholar

[11] Schneider, J.A., Randolph, M.F., Mayne, P.W. and N. R. Ramsey., "Analysis of factors influencing soil classification using normalized piezocone tipresistance and pore pressure parameters", Journal of Geotechnical and Geoenvironmental Engineering, 134(11), 2008, pp.1569-1586.

DOI: 10.1061/(asce)1090-0241(2008)134:11(1569)

Google Scholar

[12] Jung, B.C., Gardoni, P. and Biscontin, G., "Probabilistic soil identification based on cone penetration tests", Geotechnique, 58(7), 2008, pp.591-603.

DOI: 10.1680/geot.2008.58.7.591

Google Scholar

[13] Cetin, K.O. and Ozan, C., "CPT-based probabilistic soil characterization and classification", Journal of Geotechnical and Geoenvironmental Engineering, 135(1), 2009, pp.84-107.

DOI: 10.1061/(asce)1090-0241(2009)135:1(84)

Google Scholar

[14] Wroth, C.P., "Interpretation of in-situ soil test", Geotechnique, 34(4), 1984, pp.449-489.

Google Scholar

[15] Robertson, P.K. and Wride. C.E., "Evaluating cyclic liquefaction potential using the cone penetration test", Canadian Geotechnical Journal, 35(3), 1998, pp.442-459.

DOI: 10.1139/t98-017

Google Scholar

[16] Jefferies, M.G. and Davies, M.P., "Use of PCPT to estimate equivalent SPT N60", Geotechnical Testing Journal, 16(4), 1993, pp.458-468.

DOI: 10.1520/gtj10286j

Google Scholar

[17] Zhang, Z. and Tumay, M.T. Simplification of soil classification charts derived from cone penetration test. Geotechnical Testing Journal, 19(2), 1996, pp.203-216.

DOI: 10.1520/gtj10342j

Google Scholar

[18] Pradhan, T.B.S., "Soil identification using piezocone data by fuzzy method", Soils and foundations, 38(1), 1998, pp.255-262.

DOI: 10.3208/sandf.38.255

Google Scholar

[19] Zhang, Z. and Tumay, M.T. Statistical to fuzzy approach toward cpt soil classification. Journal of Geotechnical and Geoenvironmental Engineering, 125(3), 1999, pp.79-186.

DOI: 10.1061/(asce)1090-0241(1999)125:3(179)

Google Scholar

[20] Cetin, K.O. and Isik, N., "Probabilistic assessment of stress normalization for CPT data", Journal of Geotechnical and Geoenvironmental Engineering, 133(7), 2007, pp.887-897.

DOI: 10.1061/(asce)1090-0241(2007)133:7(887)

Google Scholar

[21] Abu-Farsakh, M.Y., Zhang, Z.J., Tumay, M. and Morvant, M., "Computerized cone penetration test for soil classification- development of MS-Windows software", Transportation Research Record 2053, 2008, pp.47-64.

DOI: 10.3141/2053-07

Google Scholar

[22] Meng, G., Liu, S. and Ma, S., "Application research of piezocone penetration test (cptu) in pearl river delta", Geological science and technology information, 19(1), 2000, pp.81-85.

Google Scholar

[23] Patterson, D. W., "Artificial neural networks: Theory and applications", Prentice-Hall, Singapore, 1996.

Google Scholar

[24] Goh, A. T. C., "Soil laboratory data interpretation using generalized regression neural network", Civ. Eng. Environ. Syst., 16(3), 1999, pp.175-195.

DOI: 10.1080/02630259908970261

Google Scholar

[25] Penumadu, D., and Zhao, R., "Triaxial compression behavior of sand and gravel using artificial neural networks (ANN)", J. Enhanced Heat Transfer, 24(3), 1999, pp.207-230.

DOI: 10.1016/s0266-352x(99)00002-6

Google Scholar

[26] Juang, C. H., Jiang, T. and Christopher, R. A., "Three dimensional site characterization: Neural network approach", Geotechnique, 51(9), 2001, pp.799-809.

DOI: 10.1680/geot.2001.51.9.799

Google Scholar

[27] Kurup, P. U. and Dudani, N. K., "Neural networks for profiling stress history of clays from PCPT data", Journal of Geotechnical and Geoenvironmental Engineering, 128(7), 2002, pp.569-579.

DOI: 10.1061/(asce)1090-0241(2002)128:7(569)

Google Scholar

[28] Specht, D. F., "A general regression neural network", IEEE Trans. Neural Netw., 2(6), 1991, pp.568-576.

DOI: 10.1109/72.97934

Google Scholar