[1]
Ferández-Jiménez, A Palomo J G, Puertas F. (1999). Alkali-activated Slag Mortars Mechanical Strength Behavior[J]. Cement and Concrete Research, 29(8):1313-1321.
DOI: 10.1016/s0008-8846(99)00154-4
Google Scholar
[2]
Wang Shaodong, Scrivener K L. (2003). 29Si and 27Al NMR Study of Alkali-activated Slag Cement[J]. Cement and Concrete Research, 33(5):769-774.
DOI: 10.1016/s0008-8846(02)01044-x
Google Scholar
[3]
Fu Yawei, Wang Shuotai, Wu Yonggen, et al. (2008). Study on New Alkali Slag Fast-repaired Concrete for Airport Pavement [J]. New Building Materials, 331(10):15-18. (in Chinese).
Google Scholar
[4]
Ioannis Maragkos, Ioanna P.Giannopoulou, Dimitros Panias. (2009). Synthesis of Ferronickel Slag-based Geopolymer[J]. Minerals Engineering, 22(2):196-203.
DOI: 10.1016/j.mineng.2008.07.003
Google Scholar
[5]
Fernando Pacheco-Torgal, João Castro-Gomes, Said Jalali. (2008). Alkali-activated Binders: A Review. Part 2. About Materials and Binders Manufacture[J]. Construction and building materials, 22(7):1315-1322.
DOI: 10.1016/j.conbuildmat.2007.03.019
Google Scholar
[6]
Fu Yawei, Cai Liangcai, Cao Dingguo ,etal. (2010). Manufacturing Process and Properties of Alkali-slag Mineral Polymer Concrete [J]. Journal of Building Materials,13(4):208-212. (in Chinese).
Google Scholar
[7]
Fu Yawei, Cai Liangcai, Wu Yonggen. (2011). Freeze-thaw Cycle Test and Damage Mechanics Models of Alkali-activated Slag Concrete[J]. Construction and Building Materials,25(7):3144-3148.
DOI: 10.1016/j.conbuildmat.2010.12.006
Google Scholar
[8]
Wu Yonggen, Cai Liangcai, Fu Yawei. (2011). Durability of Green High Performance Alkali-activated Slag Pavement Concrete[J]. Applied Mechanics and Materials, (99-100):158-161.
DOI: 10.4028/www.scientific.net/amm.99-100.158
Google Scholar
[9]
Cai Liangcai, Fu Yawei, Cao Dingguo, et al. (2011). Corrosion Durability of Inorganic Polymer Concrete[J]. Concrete,256(2):36-40. ( in Chinese).
Google Scholar
[10]
Zahng Zhongchen, Fu Yawei, Zhu Zhanqing, et al. (2011). Properties of Alakli-activated Compound Waste Concrete on Freeze-thaw and Abrasion Operation Together[J]. New Building Materials, 363(4):8-12. ( in Chinese).
Google Scholar
[11]
Wu Yonggen, Cai Liangcai, Fu Yawei. (2010). Performance of Airport Pavement Self-compacting Alkali-activated Concrete[J]. Journal of Air Force Engineering University(Natural Science Edition) ,11(3):1-5. ( in Chinese).
Google Scholar
[12]
S. Caijun, P.V. Krivenko, D.M. Roy. Alkali-activated Cements and Concrete[M]. Taylor &Francis, London and New York, 2006.
Google Scholar
[13]
F. Yawei.(2009). Research on Alakli-activated Slag High Performance Geopolymer Concrete[D]. Ph.D. dissertation, Air Force Eingineering Univ., Xi'an, China.
Google Scholar
[14]
ACI Committes 209. Prediction of Creep, Shrinkage and Temperature Effects on Concrete Structure. ACI.209R-92[R]. D etroit: ACI,1997:1-470.
Google Scholar
[15]
N.J. Gardner, M.J. Lockman.(2001). Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete[J]. ACI Materials Journal, 30(2):159-167.
DOI: 10.14359/10199
Google Scholar