Hollow Crystals of BiFeO3 Prepared via a Al3+-Assisted Hydrothermal Method

Article Preview

Abstract:

The BiFeO3 hollow crystals were successfully prepared at 200oC by a Al3+ assisted hydrothermal method. The structures and morphologies of the as-obtained products were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (SEM). A morphology evolution from irregular shape to square, hollow, and sphere-like was observed as the Al ions concentration varied from 0% to 1.5%. The possible growth mechanism of the BiFeO3 hollow crystals was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

516-519

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, S. W. Cheong, Nature Vol. 429 (2004), p.392.

Google Scholar

[2] J. Dho, C. W. Leung, J. L. MacManus-Driscoll, andM. G. Blamire, J. Cryst. Growth Vol. 267, (2004), p.548.

Google Scholar

[3] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B Vol. 67, (2003), p.180401.

Google Scholar

[4] N.A. Spaldin, M. Fiebig, Science Vol. 309 (2005), p.391.

Google Scholar

[5] Ramesh, R.; Spaldin, N. A. Nat. Mater Vol. 6 (2007), p.21.

Google Scholar

[6] G. A. Smolenskii and I. Chupis, Sov. Phys. Usp Vol. 25, (1982), p.475.

Google Scholar

[7] M. Mahesh Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett Vol. 76 (2000), p.2764.

Google Scholar

[8] G.D. Achenbach, W.J. James, R. Gerson, J. Am. Ceram. Soc Vol. 8, (1967), p.437.

Google Scholar

[9] S. Shetty, V. R. Palkar, and R. Pinto, Pramana. J. Phys Vol. 58 [5] (2002), p.1027.

Google Scholar

[10] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, J. Am. Ceram. Soc Vol. 88 [5] (2005), p.1349.

Google Scholar

[11] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, Mater.Res. Bull Vol. 40, (2005), p.2073.

Google Scholar

[12] N. Das, R. Majumdar, A. Sen, and H. S. Maiti, Mater. Lett Vol. 61 [10] (2007), p.2100.

Google Scholar

[13] X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature Vol. 409 (2001), p.66.

Google Scholar

[14] F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett Vol. 89, (2006), p.102506.

Google Scholar

[15] T.J. Park, Y.B. Mao, S.S. Wong, Chem. Commun Vol. 23 (2004), p.2708.

Google Scholar

[16] J.T. Han, Y.H. Huang, X.J. Wu, C.L. Wu, W. Wei, B. Peng, W. Huang, J.B. Goodenough, Adv. Mater Vol. 18 (2006), p.2145.

Google Scholar

[17] C. Chen, J. Cheng, S. Yu, L.J. Che, Z. Y. Meng, J. Cryst. Growth Vol. 291 (2006), p.135.

Google Scholar

[18] Y.G. Wang, G. Xu, Z.H. Ren, X. Wei, W.J. Weng, P.Y. Du, G. Shen, G.R. Han, Ceram Int Vol. 34 (2008), p.1569.

Google Scholar