An Overview of Master Sintering Curve

Article Preview

Abstract:

The search for a simple, accurate model to predict the sintering behavior is still a valid challenge facing the particulate materials industry. In spite of the sophistication of the before proposed methods, most models have not yet attained a desirable level of applicability. All just describe the micro sintering process but fail in controlling the densification behavior. The master sintering curve (MSC) is a model in densification which can adequately predict sintering results and is independent of heating history. The MSC can give better understanding of arbitrary sintering process and be introduced into industry production successfully. This paper provides a detailed overview of the MSC, including the construction, application, complications and some improvements of the concept.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

608-613

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D Lynn Johnson: Ceram. Trans (2005), No.157, p.3.

Google Scholar

[2] R.M. German: John Wiley & Sons, New York, 1996,1.

Google Scholar

[3] Hunghai Su, D. Lynn Johnson: J. Am. Ceram. Soc. Vol. 79 (1996), No.12, p.3211.

Google Scholar

[4] Seong Jin Park, Suk Hwan Chung, Debby Blaine, et al: Adv. Powder Metall. Part. Mater. Metal Powder Industries Federation, Part 1, Princeton, NJ, 2004, p.13.

Google Scholar

[5] D.C. Blaine, Seong Jin Park, Pavan Suri, et al: Metall. Mat. Trans. A Vol. 37 (2006), No.9, p.2827.

Google Scholar

[6] Da Li, Shaou Chen, Weiquan Shao, et al: Mater. Lett. (2008), No.62, p.849.

Google Scholar

[7] M.H. Teng, M H Chen: Ceram. Trans. (2006), No.190, p.141.

Google Scholar

[8] J Tatami, Y Suzuki, T Wakihara, et al: Key Eng. Mat. (2006), No.317-318, p.11.

Google Scholar

[9] W.Q. Shao, S.O. Chen, D. Li, et al: J. Eur. Ceram. Soc. Vol. 29 (2009), No.1, p.201.

Google Scholar

[10] Kevin G Ewsuk, Donald T Ellerby: J. Am. Ceram. Soc. Vol. 89 (2006), No.6, p.2003.

Google Scholar

[11] Yoshiaki Kinemuchi, Koji Watari: J. Eur. Ceram. Soc. Vol. 28 (2008), No.10, p.2019.

Google Scholar

[12] T.R.G. Kutty, K.B. Khan, P.V. Hegde, et al: J. Nucl. Mater. Vol. 327 (2004), No.2-3, p.211.

Google Scholar

[13] T.R.G. Kutty, K.B. Khan, P.V. Hegde, et al: Sci. Sinter. (2003), No.35, p.125.

Google Scholar

[14] M.V. Nikolic, V.P. Pavlovic, V.B. Pavlovic, et al: Mater. Sci. Forum (2005), No.494, p.417.

Google Scholar

[15] D.C. Blaine, John D. Gurosik, Seong Jin Park, et al: Metall. Mat. Trans. A Vol. 37A (2006), No.3, p.715.

Google Scholar

[16] Pranav Garg, Seong-Jin Park, R.M. German: Int. J. Refract. Met. Hard Mater. Vol. 25 (2007), No.1, p.16.

Google Scholar

[17] S.J. Park, J.M. Martin, J.F. Guo, et al: Metall. Mat. Trans. A, Vol. 37 (2006), No.9, p.2837.

Google Scholar

[18] S.J. Park, J.M. Martin, J.F. Guo, et al: Metall. Mat. Trans. A, Vol. 37 (2006), No.11, p.3337.

Google Scholar

[19] Seong Jin Park, Kristina Cowan, John L. Johnson, et al: Int. J. Refract. Met. Hard Mater. Vol. 26, (2008), No.3, p.152.

Google Scholar

[20] Christopher B Diantonio, Kevin G Ewsuk, Denise Bencoe: J. Am. Ceram. Soc. Vol. 88 (2005), No.10, p.2722.

Google Scholar