Research on Preparation and Properties of Cellulose Nanofibers and its Polymethylmethacrylate (PMMA) Based Nanocomposites

Article Preview

Abstract:

In this work, the preparation and properties of cellulose nanofibers (CNFs) which have a diameter of less than 100 nm, CNFs sheet and PMMA based nanocomposites sheet were presented. To fabricate CNFs, chemical treatments combined with grinding treatment were used in this research. The CNFs sheet was successfully fabricated by vacuum filtration, and to fabricate the PMMA based nanocomposites sheet, the CNFs sheet was immersed in the PMMA solution, and cured by heat. The tensile strength and Young’s modulus of CNFs sheet is 64.9 MPa and 4438 MPa, respectively. Due to the reinforcement function of CNFs, the tensile strength and Young’s modulus of neat PMMA sheet is improved by 60% and 190%, respectively. The light transmittance of CNFs sheet and PMMA based nanocomposites sheet is 82.1% and 89.2%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

893-899

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Klemm, B. Heublein, H.P. Fink, A. Bohn. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393.

DOI: 10.1002/anie.200460587

Google Scholar

[2] E.L. Hult, P.T. Larsson, T. Iversen. Polymer, 2001, 42: 3309–3314.

Google Scholar

[3] W.S. Chen, H.P. Yu, Y.X. Liu. Carbohydrate Polymers, 2011, 86(2):453-461.

Google Scholar

[4] S. Iwamoto, A.N. Nakagaito, H. Yano. Appl. Phys. A, 2007, 89: 461–466.

Google Scholar

[5] A. Kaushik, M. Singh. Carbohydrate Research, 2011, 346: 76–85.

Google Scholar

[6] S. Iwamoto, K. Abe, H.Y. Yano. Biomacromolecules, 2008, 9: 1022–1026.

Google Scholar

[7] J. Moran, V. Alvarez, V. Cyras, A. Vazquez. Cellulose, 2008, 15(1): 149–159.

Google Scholar

[8] E.de Morais Teixeira, A. Correa, A. Manzoli, F. de Lima Leite, C. de Oliveira, L. Mattoso. Cellulose, 2010, 17(3): 595–606.

DOI: 10.1007/s10570-010-9403-0

Google Scholar

[9] R. Li, J. Fei, Y. Cai, Y. Li, J. Feng, J. Yao. Carbohydrate Polymers, 2009, 76(1): 94–99.

Google Scholar

[10] A. Dufresne, D. Dupeyre, M. R. Vignon. Journal of Applied Polymer Science, 2002, 76(14): 2080–2092.

Google Scholar

[11] B. Wang, M. Sain, K. Oksman. Applied Composite Materials, 2007, 14(2): 89–103.

Google Scholar

[12] J. Moran, V. Alvarez, V. Cyras, A. Vazquez. Cellulose, 2008, 15(1): 149–159.

Google Scholar

[13] A.N. Nakagaito, H. Yano. Appl. Phys. A, 2005, 80: 155–159.

Google Scholar

[14] K. Abea, H.Yano. Carbohydrate Polymers, 2011, 85:733–737.

Google Scholar

[15] L.Suryanegara, A. N. Nakagaito, H. Yano. Composites Science and Technology, 2009, 69: 1187–1192.

Google Scholar

[16] M. Özgür Seydibeyoglu, K. Oksman. Composites Science and Technology, 2008, 68(3-4): 908-914.

Google Scholar

[17] J. Lu, P. Askeland, L.T. Drzal. Polymer, 2008, 49(5): 1285-1296.

Google Scholar

[18] M. Henriksson, L.A. Berglund, P. Isaksson. Biomacromolecules, 2008, 9(6): 1579-1585.

Google Scholar

[19] K.Abe, S.Iwamoto and H.Yano. Biomacromolecules, 2007, 8(10): 3276–3278.

Google Scholar

[20] H. Yano, J. Sugiyama, A.N. Nakagaito. Advanced Materials, 2005, 17(2):153-155.

Google Scholar

[21] H.Y. Liu, D.G. Liu, F. Yao, Q.L. Wu. Bioresource Technology, 2010, 101: 5685–5692.

Google Scholar

[22] D. Patidar, S. Agrawal, N. S. Saxena. J Therm Anal Calorim, 2011, 106:921–925.

Google Scholar

[23] F. Nanni, F. R. Lamastra, F. Pisa, G. Gusmano. J Mater Sci, 2011, 46:6124–6130.

Google Scholar

[24] W. Viratyaporn, R. L. Lehman. J Therm Anal Calorim, 2011, 103:267–273.

Google Scholar

[25] K. Abe, H. Yano. Cellulose, 2009, 16:1017–1023.

Google Scholar