The Possible Mechanisms of Cadmium Accumulation in Tagetes erecta L. under Macronutrient Deficiency

Article Preview

Abstract:

An experiment was conducted under hydroponic culture conditions to determine effects of nutrient deficiencies on cadmium (Cd) accumulation of Tagetes erecta L. and its possible mechanisms. Seedlings of similar size were pre-cultured in either N- or P- deprived nutrient solution for 7 days before exposure to 0.1 mg Cd L-1. The control plants had normal nutrient supply before and during Cd exposure. The plants were harveste after 7 days exposure to Cd. In N-deprived plants, Cd levels in roots, stems and roots were significantly reduced, which was consistent with a decrease of phytochelatins (PCs) in roots. Cd accumulation was the lowest in N-deficient plants, corresponding to substantial decreases in organic acids. In P-deprived plants, the obvious increase of Cd content in the root and stem and decrease of Cd content in the leaf accorded with increases of citric acid in the root and malic acid in the stem, supporting the suggestion that organic acids sequester soluble Cd and reduce Cd transport into the leaf.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1060-1064

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.S. Cobbett. Plant Physiol. Vol.123 (2000), p.825.

Google Scholar

[2] J.L. Hall. J. Exp. Bot. Vol. 53 (2002), p.1.

Google Scholar

[3] W.E. Rauser. Cell Biochem. Biophys. Vol. 31 (1999), p.19.

Google Scholar

[4] D.L. Callahan, A.J.M. Baker, S.D. Kolev and A.G. Wedd. J. Biol. Inorg. Chem. Vol. 11 (2006), p.2.

Google Scholar

[5] G. Rosa de la, J. R. Peralta-Videa, M. Montes, J.G. Parsons, I. Cano-Aguilera and J.L. Gardea-Torresdey. Chemosphere Vol. 55 (2004), p.1159.

DOI: 10.1016/j.chemosphere.2004.01.028

Google Scholar

[6] J.G. Li, T.Q. Li, E. Zhu, X.E. Yang, G.L. Lin, D. Liu, X.R. Han and Y.L. Zhang. J. Soil Water Conserv. Vol. 21 (2007), p.54.

Google Scholar

[7] Y.S. Al-faiyz, M.M. El-Garawany, F.N. Assubaie and M.A. Al-Eed. Bull. Environ. Contam. Toxico. Vol. l78 (2007), p.358.

DOI: 10.1007/s00128-007-9025-x

Google Scholar

[8] S.P. Saini and B.D. Kansal. Agr. Sci. Digest. Vol.18 (1998), p.145.

Google Scholar

[9] K.S. Sajwan, S. Paramasivam, J.P. Richardson and A.K. Alva. J. Plant Nutr. Vol.25 (2002), p.2027.

Google Scholar

[10] K. Lal, P.S. Minhas, S.R.K. Chaturvedi and R.K. Yadav. Bioresource Technol. Vol. 99 (2008), p.1006.

Google Scholar

[11] J. Sedlak and R.H. Lindsay. Anal. Biochem. Vol. 25 (1968), p.192.

Google Scholar

[12] J.W. Rijstenbil and J.A. Wijnholds. Mar. Biol. Vol.127 (1996), p.45.

Google Scholar

[13] G. Noctor and C.H. Foyer. Anal. Biochem. Vol. 264 (1998) 98.

Google Scholar

[14] F.F. Nocito, L. Pirovano, M. Cocucci and G.A. Sacchi. Plant Physiol. Vol. 129 (2002), p.1872.

Google Scholar

[15] J. Shen, C. Tang, Z. Rengel and F. Zhang. Plant Soil Vol. 260 (2004), p.69.

Google Scholar

[16] Z. Wang, J. Shen and F. Zhang. Plant Soil Vol. 287 (2006), p.247.

Google Scholar

[17] D. Zhao, K.R. Reddy, V.G. Kakani and V.R. Reddy. Eur. J. Agron. Vol. 22 (2005), p.391.

Google Scholar

[18] H. Hogh-Jensen, J.K. Schjoerring and J.F. Soussana. Ann. Bot. Vol. 90 (2002), p.745.

Google Scholar

[19] Y.L. Zhu, E.A.H. Pilon-Smits, L. Jouanin and N. Terry. Plant Physiol. Vol. 119 (1999b), p.73.

Google Scholar

[20] J.M. Gong, D.A. Lee and J.I. Schroeder. PNAS Vol. 100 (2003) 10118.

Google Scholar

[21] J. Wang, B.P. Evangelou, M.T. Nielsen and G.J. Wagner. Plant Physiol. Vol. 97 (1991), p.1154.

Google Scholar

[22] G.J. Wagner. Adv. Agron. Vol. 51 (1993), p.173.

Google Scholar

[23] D. Ueno, J.F. Ma, T. Iwashita, F.J. Zhao and S.P. McGrath. Planta Vol. 221 (2005), p.928.

Google Scholar