Super Heavy Oil Wastewater Treatment by Combined ME and I-BF Process-A Field Pilot Study

Article Preview

Abstract:

A field pilot test was conducted on a macro-electrolysis/biological filter with immobilized microorganism system (ME/I-BF) in the Liaohe oilfield, China to treat super heavy oil wastewater with large amounts of dissolved recalcitrant organic compounds and low nutrients of nitrogen and phosphorus. By operating the system for 155 days (including the start-up of 28 days), the BOD/COD ratio of water increases from 0.13 to 0.22 and the COD removal rate is 47.46% after the ME treatment. Then, the COD decreases to 100 mg/L and the COD removal rate is 80.96% after I-BF treatment. When indigenous microorganisms inoculated, the effluent gets better, COD decreases to 70 mg/L and the removal rate of COD increases to 88.54%. Gas chromatography/mass spectrometry (GC/MS) indicated that the super heavy oil wastewater contains 11 organic compounds and most of them are removed after treatment. This integrated system is a useful option for the treatment of heavy oil wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

485-490

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.D. Ji., T.H. Sun, J.R. Ni, J.J. Tong: Bioresource Technol., vol.100 (2009), p.1108

Google Scholar

[2] J. Li, M. Ma, Q. Cui, Z. J.Wang: Bull Environ Contam Toxicol., vol. 80 (2008), P.492.

Google Scholar

[3] G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S.j. Chang, P. J. Li: Ecol. Eng., vol.18 (2002), p.459

Google Scholar

[4] M. Lu, Z.Z. Zhang, W.Y. Yu, W. Zhu: Int. Biodeterior. Biodegrad., vol.63(2009), p.316

Google Scholar

[5] G.T. Tellez, N. Nirmalakhandan, J.L. Gardea-Torresdey: Adv Environ Res., vol.6 (2002), p.455

Google Scholar

[6] X. Zhao, Y.M. Wang, Z.F. Ye, Alistair G.L. Borthwick, J.R. Ni: Process Biochem., vol.41 (2006), p.1475

Google Scholar

[7] W. Schola, W. Fuchsm: Water Res., vol. 34 (2000), p.3621

Google Scholar

[8] Z.Y. Wang, Z.F. Ye and M.H. Zhang: J Appl. Microbiol., vol. 110 (2010), p.1476

Google Scholar

[9] Z.Y. Wang, Z.F. Ye, M.H. Zhang, X. Bai: Process Biochem., vol.45 (2010), p.993

Google Scholar

[10] Z.F. Ye, J.R. Ni: J Basic Sci. Eng., vol. 10 (2002), p.325

Google Scholar

[11] S.H. Guo, H.R. Zhang, J.H. Qu, H.J. Liu: Acta Scientiae Circumstantiae. vol. 22 (2002), p.29.

Google Scholar

[12] G.Y. Li, T.C. An, J.X. Chen, G.Y. Sheng, J.M. Fu, F.Z. Chen, S.Q. Zhang, H.J. Zhao: J. Hazard. Mater., Vol. B138 (2006), p.392

Google Scholar

[13] E. Chamarro, A. Marco, S. Esplugas: Water Res., vol. 35(2001), p.1047

Google Scholar

[14] G. Li, S.H. Guo, F.M. Li: J Environ Sci., vol. 22(2010), p.1875

Google Scholar

[15] M. Lu, Z.Z. Zhang, W.Y. Yu, W. Zhu: Int. Biodeterior. Biodegrad., vol.63(2009), p.316

Google Scholar

[16] Q. Li, X.Q. Hu, P.F. Wei: Environmental Protection of Xinjiang, vol. 27(2005), p.1

Google Scholar

[17] P.F. Wei, B.Y. Zhang, Q. Li, Y.H. Zhang: Chemistry & Bioengineering, vol. 5(2004), p.53

Google Scholar

[18] Z.M. Shen, W.H. Wang, J.P. Jia, J.C. Ye, X, Feng, A. Peng: J Hazard Mater., vol. B84(2001), p.107

Google Scholar

[19] M.D. Nurul Amin, S. Kaneco, T. Kato, H. Katsumata, T. Suzuki, K. Ohta: Chemosph., vol. 70(2008), p.511

DOI: 10.1016/j.chemosphere.2007.09.017

Google Scholar

[20] Z.F. Ye, J.R. Ni: Patent 2004; No. 004100625771. China.

Google Scholar