Influence of Heat Treated Temperature on the Photoactivating Property of Nanometer ZnO/SnO2 Powder

Article Preview

Abstract:

Nanometer ZnO/SnO2 powder was prepared by coprecipitating method with SnCl4•5H2O, ZnNO3•6H2O, HCl, NaOH as raw materials. Influence of heat treated temperature on the photoactivating property and structure and material phase of nanometer ZnO/SnO2 (ZnO/SnO2=4/1(mol ratio)) compound photocatalyst powder was studied by X-ray diffraction (XRD) and transmission electron microscope(TEM) and the degradation of methyl orange solution as a reaction model. The results show that the photoactivating activity of ZnO/SnO2 powder starts increasing and then decreasing when heat treated temperature increases. The photoactivating activity of ZnO/SnO2 powder is maximum, particle size is 20-30 nanometer and dispersion is good when heat treated temperature is 650°C. The photocatalytic activity of ZnO/SnO2 powder gradually reduces, dispersion is not good and there is Zn2SnO4 crystal phase when heat treated temperature is above 750°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

126-129

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda: Nature Vol. 238 (1972), p.37.

Google Scholar

[2] K. Hashimoto, A. Fujishima: Illustrated Encyclopedia of photocatalytic technology (Science Press, Beijing, China 2003) (in chin. ).

Google Scholar

[3] L. Gao, S. Zheng, Q. H. Zhang: Nanometer titania Photocatalytic Material and Application (Chemical Industry Press, Beijing, China 2002) (in chin. ).

Google Scholar

[4] M. Sun, X. W. Wei, X. H. Hu: Materials Review(in chin. ) Vol. 21 (2007), p.153.

Google Scholar

[5] W. X. Liang, W.B. Mo: New Chemical Materials(in chin. ) Vol. 37 (2009), p.18.

Google Scholar

[6] P. Bonamali, S. Maheahwar: Materials Chemistry and Physics Vol. 76 (2002), p.82.

Google Scholar

[7] M. Miki-Yashida,V. Collins-Martinez, P. Amerzaga-Madrid: Thin Solid Films Vol. 416 (2002), p.60.

Google Scholar

[8] S. Stakthivela, B. Neppolianb and M.V. Shankar: Solar Energy Materials & Solar Cells Vol. 77(2003), p.65.

Google Scholar

[9] A. Akyol, H. C. Yatmaz and M. Bayramoglu: Applied Catalysis B:Environmental Vol. 54 (2004), p.19.

Google Scholar

[10] C. P. Liu: Journal of Materials Science and Engineering (in chin. ) Vol. 28 (2010), p.605.

Google Scholar

[11] H. H. Teng, S. K. Xu, M. Wang: Journal of Inorganic Materials (in chin. ) Vol. 25 (2010), p.1034.

Google Scholar

[12] L. Di, H. Hajime: J. Photochem. Photobiol. A Vol. 160 (2003), p.203.

Google Scholar

[13] C. Wang, J. C. Zhao, X. M. Wang: Appl. Catal. B Vol. 39 (2002), p.269.

Google Scholar

[14] J. Lahiri, M. Batzill : J. Phys. Chem. C Vol. 112 (2008), p.4304.

Google Scholar

[15] Y. H. Deng: Composited,Doped and Photocatalytic Properties of Nano-ZnO Light Catalyst (Zhenjiang: Jiangsu University, 2011) (in chin. ).

Google Scholar

[16] B. M. Zhou, L. C. Shen and J. X. Cao: Chemical Research and Application(in chin. ) Vol. 20 (2008), p.705.

Google Scholar

[17] J. Bandara, K. Tennakone and P. P. B. Jayatilaka: Chem. Osphere Vol. 49 (2002), p.439.

Google Scholar

[18] Y. L. Li, P. Luo,Y. Huang, M. Fu, F. F. Zhi : Journal of Southwest University(Natural Science Edition) (in chin. ) Vol. 32 (2010), p.44.

Google Scholar

[19] M. H. Zhou, J. G. Yu, B. Cheng: J. Hazardous Materials Vol. 137 (2006), p.1838.

Google Scholar