An Optimization of Targeting in Chaotic Systems Based on Numerical Simulation

Article Preview

Abstract:

Chaos control is to adjust the chose system to the desired orbit through the tiny disturbance by using the extreme sensitivity and ergodicity. In this paper we improved the OGY method with multistep targeting. The result is more superior than the OGY method, even superior than the chaotic targeting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1318-1322

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Eason, B. Noble, and I. N. Sneddon, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Phil. Trans. Roy. Soc. London, vol. A247, p.529–551, April 1955. (references).

DOI: 10.1098/rsta.1955.0005

Google Scholar

[2] O. E. RÖssler. An Equation for Continuous Chaos. Phys. Lett. A, 1976, 57(5): 397~398.

Google Scholar

[3] D. Ruelle, F. Takens. On the Nature of Turbulence. Commun. Math Phys, 1971, 20(4): 167 ~192.

Google Scholar

[4] R. M. May. Simple Mathematical Models with very Complicated Dynamics Nature, 1976, 261(5560): 459~467.

DOI: 10.1038/261459a0

Google Scholar

[5] T. Shinbrot, C. Grebogi, E. Ott, et al. Using Small Perturbations to Control Chaos. Nature, 1993, 363(6428): 411~417.

DOI: 10.1038/363411a0

Google Scholar

[6] M. Pettini. Dynamics and Stochastic Processes. New York: Springer-Verlag, 1988: 2 42~250.

Google Scholar

[7] E. Ott, C. Grebogi, J. A. Yorke. Controling Chaos. Phys. Rel. Lett., 1990, 64(11): 1196~1199.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[8] E. Ott, C. Grebogi, and J.A. Yorke, Controlling chaos[J]. Physical Review Letters, 1990, 64(11), 1196-1199J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, p.68–73.

DOI: 10.1103/physrevlett.64.1196

Google Scholar

[9] T. Shinbrot, E. Ott, C. Grebogi, et al. Using Chaos to Direct Trajectories to Targets[J]. Physical Review Letters, 1990, 65(26), 3215-3218.

DOI: 10.1103/physrevlett.65.3215

Google Scholar

[10] T. Shinbrot, E. Ott, C. Grebogi, et al. Using chaos to direct orbits to targets in systems describable by a one-dimensional map[J]. Physical Review A, 1992, 45(6), 4165-4168.

DOI: 10.1103/physreva.45.4165

Google Scholar

[11] T. Shinbrot, W. Ditto, C. Grebogi, et al. Using the Sensitive Dependence of Chaos (the Butterfly Effect, ) to Direct Trajectories in an Experimental Chaotic System[J]. Physical Review Letters, 1992, 68(19), 2863-2866.

DOI: 10.1103/physrevlett.68.2863

Google Scholar

[12] Haigang An Using Chaos to Direct Trajectories to Targets by Multistepg [J] Journal of Hebei Normal University Vol. 30 No. 2 182-184 Figure 1. Chaos control with OGY method Figure 2. Chaos control with targeting method Figure 3 Chaos control with multistep targeting method.

DOI: 10.1016/j.chaos.2007.09.056

Google Scholar