[1]
Idris Dag, Yılmaz Dereli. Numerical solutions of KdV equation using radial basis functions. Applied Mathematical Modelling 32(2008): 535-546.
DOI: 10.1016/j.apm.2007.02.001
Google Scholar
[2]
E.J. Kansa. Multiquadratic-a scattered data approximation scheme with applications to computational fluid dynamics-I. Surfac eapproximations and partial derivatives estimates. Comput. Math. Applic. 19(1990): 127-145.
DOI: 10.1016/0898-1221(90)90270-t
Google Scholar
[3]
R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(1995): 251-264.
DOI: 10.1007/bf02432002
Google Scholar
[4]
H. Wendland. Piecewise polynomial, positive definition and compactly supported radial functions of minimal degree. Advance in Comp. Math. 4(1995): 389-396.
DOI: 10.1007/bf02123482
Google Scholar
[5]
Z. Wu. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs. Chinese Journal of Engineering Mathematics 19(2002): 1-12.
Google Scholar
[6]
M.D. Buhmann. A new class of radial basis functions with compact support. Math. Comput. 70(2000): 307-318.
DOI: 10.1090/s0025-5718-00-01251-5
Google Scholar
[7]
C. Frank, R. Schaback. Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93(1998): 73-82.
DOI: 10.1016/s0096-3003(97)10104-7
Google Scholar
[8]
J. Li. A radial basis meshless method for solving inverse boundary value problems. Communications in Numerical Methods in Engineering , 20(2004): 51-60.
DOI: 10.1002/cnm.653
Google Scholar
[9]
A. La Rocca, A. Hernandez Rosales, H. Power. Radial basis function Hermite collocation approach for the solution of time dependent convection–diffusion problems. Engineering Analysis with Boundary Elements 29(2005): 359-370.
DOI: 10.1016/j.enganabound.2004.06.005
Google Scholar
[10]
E.M. Stein, G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, (1971).
Google Scholar