[1]
GrossmanA, Morlet J. Decomposition of Hardy Functions into Square Integable Wavelets of Constant Shape,. Siam. T J. Math. AnalT, 1984, 15(4): 723-736.
DOI: 10.1137/0515056
Google Scholar
[2]
Daubechies, I.: Orthonormal bases of compactly supported wavelets, , Commun. Pure Appl. Maths., 1988, 41, (2), p.909–980.
DOI: 10.1002/cpa.3160410705
Google Scholar
[3]
W. Sweldens, The lifting scheme: a new philosophy in biorthogonal wavelet constructions, Proc. SPIE-Int. Soc. Opt. Eng., 1995, 2569, p.68–79.
Google Scholar
[4]
I. Guskov.: Multivariate Subdivision Scheme and Divided Differences. , Technical Report, PrinceTon University, (1998).
Google Scholar
[5]
L. Cheng, D.L. Liang and Z.H. Zhang.: Popular biorthogonal wavelet filters via a lifting scheme and its application in image compression, , IEE Proc. -Vis. Image Signal Process., Vol. 150, No. 4, August 2003, p.227.
DOI: 10.1049/ip-vis:20030557
Google Scholar
[6]
Daubechies, I., and Sweldens, W.: Factoring wavelet transforms into lifting step, ,J. Fourier Anal. Appl., 1998, 4, (3), p.247–269.
DOI: 10.1007/bf02476026
Google Scholar
[7]
Amira, A., Bouridane, A., and Milligan, P.: RCMAT: a reconfigurable coprocessor for matrix algorithms. , Proc. Ninth ACM/IEEE Int. Symp. Field Program. Gate Arrays (FPGAs), 2001, p.228.
Google Scholar
[8]
Amira, A.: A custom coprocessor for matrix algorithms. " PhD thesis, The Queen, s University of Belfast, United Kingdom, 2000, http: /www. cs. qub. ac. uk/~a. amira.
Google Scholar
[9]
Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation, , IEEE Trans. Pattern Anal. Mach. Intell., 1989, 11, (7), p.674–693.
DOI: 10.1109/34.192463
Google Scholar
[10]
S. Masud and J.V. McCanny.: Rapid design of biorthogonal wavelet transforms, , IEE Proc. -Circuits Devices Syst., Vol. 147, No. 5. October 2000, p.293–296.
DOI: 10.1049/ip-cds:20000692
Google Scholar