Measurement of Dislocation Density in Cold-Drawn Steel Wires by Means of X-Ray Bragg Profiles Analysis

Article Preview

Abstract:

Cold-drawn pearlitic steel wires are widely used in numerous engineering fields. One of the most powerful analysis methods on determining the dislocation character of this heavily cold worked material is to investigate the X–ray diffraction line-profile broadening. Fourier line–broadening analysis in steel wires with near eutectoid composition indicates that with cumulative true strains, the initial dislocation density of 6×1014m-2 in the rods increases at least one magnitude in wires. Up to 1.5×1016m-2 of dislocation density is found in the ferrite lamella of wires with a true strain of 2.77.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1054-1059

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Toribio, M. Toledano: Construction and Building Materials, Vol. 14 (2000), p.47.

Google Scholar

[2] L. Kasper, W. Martine and V. Bert: Proc. Eng. Vol. 10 (2011), p.3259.

Google Scholar

[3] X.D. Zhang, G. Andy and X.X. Huang: Acta Mater. Vol. 59 (2011), p.3422.

Google Scholar

[4] Y. Wang, S. Lee and Y. Lee. J. Appl. Cryst., 15 (1982), p.35.

Google Scholar

[5] T. Ungár, I. Dragomir and Á. Révész: J. Appl. Crystallogr. Vol. 32 (1999), p.992.

Google Scholar

[6] N. Zhang, Y. Wang: Thin Solid Films, Vol. 214 (1992), p.4.

Google Scholar

[7] FL, Shan, Y. Wang: Vacuum Vol. 51(1998), p.381.

Google Scholar

[8] A. R. Strokes: Proc. Phys. Soc. Vol. A61 (1948), p.382.

Google Scholar

[9] B.E. Warren, Progress in Metal Physics, Vol. 8. Pergamon Press, London, 1959, p.147.

Google Scholar

[10] Y. Wang, Z. Zhang. Phys., 35 (1987), p.109.

Google Scholar

[11] Lsaf manual, Materials Research Center, Jilin University, (1993).

Google Scholar

[12] M. Wilkens: Phys. Status Solidi(a) Vol. 2 (1970), p.359.

Google Scholar

[13] T. Ungár, G. Tichy Phys. Phys. Stat. Sol. (a), 171 (1999), p.425.

Google Scholar

[14] P. Haasen Phy. Metall. Cambridge University Press, Cambridge (1996).

Google Scholar

[15] T. Ungár, M. Leoni and P. Scardi: J. Appl. Crystallogr. Vol. 32, (1999), p.290.

Google Scholar

[16] F. Yang, C. Ma and J.Q. Jiang: Scripta Materi., Vol (59) (2008), p.850.

Google Scholar