[1]
K. Lu, J. Lu, Mater. Sci. Eng., A Struct. Mater.: Prop. Microstruct. Process. 38 (2004) 375-377.
Google Scholar
[2]
Hongtao Wang, Wei Yang. Mechanical Behavior of Nanocrystalline Metals. Advancesin Mechanics 2004, pp.314-326.
Google Scholar
[3]
Ke Lu, Jian Lu. Mechanical way and special equipment for formation of nanostructures. CN 01122980. 2, 200−02−20.
Google Scholar
[4]
N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu. An investigation of surface nanocrystallization mechanism in Fe by surface mechanical attrition treatment. Acta Mater. 50 (2002) 4603-4616.
DOI: 10.1016/s1359-6454(02)00310-5
Google Scholar
[5]
Z.B. Wang, N.R. Tao. Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci & Eng A 352 (2003) 144-149.
Google Scholar
[6]
G. Liu, J. Lu, K. Lu. Surface nanocrystallization of 316 stainless steel induced by ultrasonic shot peening. Mater Sci & Eng A 286 (2000) 91-95.
DOI: 10.1016/s0921-5093(00)00686-9
Google Scholar
[7]
Lu, J.Z., et al., Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Mater. 58 (2010) 3984-3994.
DOI: 10.1016/j.actamat.2010.03.026
Google Scholar
[8]
Z.B. Wang, J. Lu, K. LU. Chromizing behaviors of a low carbon steel processed by means of surface mechanical attrition treatment. Acta Mater. 53 (2005) 2081-(2089).
DOI: 10.1016/j.actamat.2005.01.020
Google Scholar
[9]
W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu. Nitriding iron and 38CrMoAl steel with a nanostructrued surface layer. Journal of the Graduate School of the Chinese Academy of Science 22 (2005) 230-238.
Google Scholar
[10]
Jianhua Jiang, Jiangwei Ren. Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment. Mater Sci & Eng A 520 (2009) 80-89.
DOI: 10.1016/j.msea.2009.05.009
Google Scholar
[11]
J.B. Andrew, H.D. Kessler. Manganese and niobium-modified titanium aluminum alloys. Journal of Metsis 10 (1956) 1348-1353.
Google Scholar
[12]
Y.Y. Chen, F.T. Kong, J.C. Han, Z.Y. Chen, J. Tian. Influence of yttrium on microstructure, mechanical properties and deformability of Ti-43Al-9V alloy. intermetallics, 13 (2005) 263-266.
DOI: 10.1016/j.intermet.2004.07.014
Google Scholar
[13]
E.A. Loria. Gamma titanium aluminides as prospective structural materials. Intermetallics 8 (2000) 1339-1345.
DOI: 10.1016/s0966-9795(00)00073-x
Google Scholar
[14]
H.P. Klng, L.E. Alexander. X-ray Diffraction procedures for Polycrstalline and Amorphous Materials,2nd Edition New York:Wiley, 1974;662.
Google Scholar
[15]
R.Z. Valiev, I.V. Alexandrov, W.A. Chiou, R.S. Mishra and A.K. Mukherjee. Comparative Structural Studies of nanocrystalline Materials Processed by Different Techniques. Materials Science Forum, 235-238 (1996) 497-506.
DOI: 10.4028/www.scientific.net/msf.235-238.497
Google Scholar
[16]
K.Y. Zhu, A. Vassel, F. Brisset, K. Lu . J Lu. Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater. 52 (2004) 4101-4110.
DOI: 10.1016/j.actamat.2004.05.023
Google Scholar