[1]
T. Irie, G. Yamada and Y. Kaneko: Free vibration of a conical shell with variable thickness, Journal of Sound and Vibration, Vol. 82 (1982) No.1, p.83.
DOI: 10.1016/0022-460x(82)90544-2
Google Scholar
[2]
T. Irie, G. Yamada and Y. Kaneko: Free vibration of joined conical-cylindrical shells, Journal of Sound and Vibration, Vol. 95 (1984) No.1, p.31.
DOI: 10.1016/0022-460x(84)90256-6
Google Scholar
[3]
Y.S. Lee, M.S. Yang and H.S. Kim et al: A study on the free vibration of the joined cylindrical–spherical shell structures, Computers and Structures, Vol. 80 (2002) No.27-30, p.2405.
DOI: 10.1016/s0045-7949(02)00243-2
Google Scholar
[4]
M.N. Naeem and C.B. Sharma: Prediction of natural frequencies for thin circular cylindrical shell, Journal of Mechanical Engineering Science, Vol. 214 (2000), p.1313.
Google Scholar
[5]
D. Zhou, Y.K. Cheung and S.H. Lo et al: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev-Ritz method. Computer Methods in Applied Mechanics and Engineering, Vol. 192 (2003), p.1575.
DOI: 10.1016/s0045-7825(02)00643-6
Google Scholar
[6]
M. Caresta and N.J. Kessissoglou: Free vibrational characteristics of isotropic coupled cylindrical–conical shells, Journal of Sound and Vibration, Vol. 329 (2010) No.6, p.733.
DOI: 10.1016/j.jsv.2009.10.003
Google Scholar
[7]
M. Caresta and N.J. Kessissoglou: Acoustic signature of a submarine hull under harmonic excitation, Applied Acoustics, Vol. 71 (2010) No.1, p.17.
DOI: 10.1016/j.apacoust.2009.07.008
Google Scholar
[8]
M. Caresta: Active control of sound radiated by a submarine in bending vibration, Journal of Sound and Vibration, Vol. 330 (2011), p.615.
DOI: 10.1016/j.jsv.2010.09.006
Google Scholar
[9]
X.B. Li: Study on free vibration analysis of circular cylindrical shells using wave propagation, J Sound Vib, Vol. 311 (2008), p.667.
DOI: 10.1016/j.jsv.2007.09.023
Google Scholar
[10]
M. Amabili: A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach, Journal of Sound and Vibration, Vol. 264 (2003), p.1091.
DOI: 10.1016/s0022-460x(02)01385-8
Google Scholar
[11]
R. Salahifar and M. Mohareb: Analysis of circular cylindrical shells under harmonic forces, Thin-Walled Structures, Vol. 48 (2010), p.528.
DOI: 10.1016/j.tws.2010.02.006
Google Scholar
[12]
Y.M. HUANG: The effects of dynamic absorbers on the forced vibration of a cylindrical shell and its couples interior sound field, Journal of Sound and Vibration, Vol. 200 (1997), p.401.
DOI: 10.1006/jsvi.1996.0708
Google Scholar
[13]
C.Y. Glandier, Y.H. Berthelot and J. Jarzynski: Wave-vector analysis of the forced vibrations of cylindrical shells of finite length, Acoustical Society of America, Vol. 92 (1992), p.1985.
DOI: 10.1121/1.405248
Google Scholar
[14]
A.W. Leissa: Vibration of Shells [M]. Ohio, U.S: Acoustical Society of America, 1993.
Google Scholar
[15]
G. Dupire, J.P. Boufflet and M. Dambrine et al: On the necessity of Nitsche term, Applied Numerical Mathematics, Vol. 60 (2010) No.9, p.888.
DOI: 10.1016/j.apnum.2010.04.013
Google Scholar