[1]
I. K.P. Soman K.I. Ramachandran,Insyghts Into Wavelets From Theory to Practice, PHI , New Delhi , PA, 2004.
Google Scholar
[2]
G. Beylkin, R. R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Comm. Pure, Appl. Math. 44(1991) 141–183.
DOI: 10.1002/cpa.3160440202
Google Scholar
[3]
I. Daubechies, Orthonormal bases of compactly supported wavelets II, Variations on a theme, SIAM J. Math.Anal. 24(1993) 499–519.
DOI: 10.1137/0524031
Google Scholar
[4]
L. Winger, A. Venetsanopoulos, Biorthogonal nearly coiflet wavelets for image compression, Signal. Process-Image. 16(9)(2001) 859-869.
DOI: 10.1016/s0923-5965(00)00047-3
Google Scholar
[5]
J. Tian, The mathematical theory and applications of biorthogonal Coifman wavelet systems, Ph.D. Dissertation, Rice University, Houston,TX, Feb. 1996.
Google Scholar
[6]
D. Wei, and A.C. Bovik, Generalized Coiflets with Nonzero-Centered Vanishing Moments, IEEE T. CIRCUITS-II. 45(8)(1998) 988-1001.
DOI: 10.1109/82.718808
Google Scholar
[7]
G.W. Pan, Ke Wang, and D.Cochran. Coifman Wavelets in 3-D Scattering From Very Rough Random Surfaces. IEEE T. Antenn. Propag. 52(11)(2004) 3096-3103.
DOI: 10.1109/tap.2004.835127
Google Scholar
[8]
K. Maleknejad, T. Lotfi, Y. Rostami, Numerical computational method in solving Fredholm integral equations of the second kind by using Coifman wavelet, Appl. Math. Comput. 186(2007) 212–218.
DOI: 10.1016/j.amc.2006.06.127
Google Scholar
[9]
L.H. Wen , J.M. Zhang, J.C. Sun, On the use of wavelet transform for the integral-equation solution of acoustic radiation and scattering, Acta Acust. 26(4)(2001) 312–318.
Google Scholar
[10]
Hesham, M., Wavelet-based solution of integral equations for acoustic scattering, Can.Acoust. 34(1)(2006)19-27
Google Scholar