[1]
S.A. Silling, M.J. Forrestal, Mass loss from abrasion on ogive-nose steel projectiles that penetrate concrete targets, International Journal of Impact Engineering, 34(2007) 1814-1820.
DOI: 10.1016/j.ijimpeng.2006.10.008
Google Scholar
[2]
S.R. Beissel, G.R. Johnson, An abrasion algorithm for projectile mass loss during penetration, International Journal of Impact Engineering, 24(2000) 103-116.
DOI: 10.1016/s0734-743x(99)00146-3
Google Scholar
[3]
S.R. Beissel, G.R. Johnson, A three-dimensional abrasion algorithm for projectile mass loss during penetration, International Journal of Impact Engineering, 27(2002) 771-789.
DOI: 10.1016/s0734-743x(02)00006-4
Google Scholar
[4]
S.E. Jones, W.K. Rule, On the optimal Nose Geometry for a Rigid Penetrator, Including the Effects of Pressure-dependent Friction. International Journal of Impact Engineering, 24(2000) 403-415.
DOI: 10.1016/s0734-743x(99)00157-8
Google Scholar
[5]
S.E. Jones, J.C. Foster, O.A. Toness et al, An estimate for mass loss from high velocity steel penetrators, Proceedings of the ASME PVP-435 Conference on Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structures, NewYork: ASME, 422(2002).
DOI: 10.1115/pvp2002-1149
Google Scholar
[6]
S.E. Jones, M.L. Hughes, O.A. Toness, R.N. Davis, A one-dimensional analysis of rigid-body penetration with high-speed friction. Proc. Instn Mech. Engrs, Part C: J. Mechanical Engineering Science, 217(2003), 411-422.
DOI: 10.1243/095440603321509694
Google Scholar
[7]
S.E. Jones, R.N. Davis, M.L. Hughes, O.A. Toness, Penetration with high-speed friction, In Thermal-Hydraulic Problems, Sloshing Phenomena, and Extreme Loads on Structure, PVP-Vol. 435(2002) 255-262.
DOI: 10.1115/pvp2002-1153
Google Scholar
[8]
R.N. Davis, Modeling of high-speed friction using multi-step incrementation of the coefficient of sliding friction, In Proceedings of the AIAA 54th Annual Southeastern Regional Student Conference, Kill Devil Hills, North Carolina, 27-28 March (2003).
Google Scholar
[9]
R.N. Davis, S.E. Jones, M.L. Hughes, High-speed penetration of concrete using a new analytical model of velocity-dependent friction, ASME 2003 Pressure Vessels and Piping Conference, Cleveland: ASME, 454(2003), 111-116.
DOI: 10.1115/pvp2003-1823
Google Scholar
[10]
R.N. Davis, A.M. Neely, S.E. Jones, Mass loss and blunting during high-speed Penetration, Proc. Inst. Mech. Eng. C: J. Mech. Eng, 218(2004) 1053-1062.
Google Scholar
[11]
X.W. Chen, L.L. He, S.Q. Yang, Modeling on mass abrasion of kinetic energy Penetrator, European Journal of Mechanics A/Solids, 29 (2010) 7-17.
DOI: 10.1016/j.euromechsol.2009.07.006
Google Scholar
[12]
M.J. Forrestal, D.J. Frew, S.J. Hanchak, N.S. Brar, Penetration of grout and concrete targets with ogive-nose steel projectiles, Int. J. Impact Eng, 18 (1996) 465-476.
DOI: 10.1016/0734-743x(95)00048-f
Google Scholar
[13]
L.L. He, X.W. Chen, X. He, Parametric study on mass loss of penetrator, Acta Mech. Sin, 26 (2010) 585-597.
DOI: 10.1007/s10409-010-0341-8
Google Scholar
[14]
L.L. He, X. W. Chen, Analyses of the penetration process considering mass loss, European Journal of Menchanics A/Solids, 30 (2011) 145-157.
DOI: 10.1016/j.euromechsol.2010.10.004
Google Scholar
[15]
Y. YANG et al., An Abrasion Algorithm for Ogive-Nose Steel Projectile Penetrating Concrete Target, Chinese Journal of High Pressure Physics, 26(2012) 83-88.
Google Scholar