Research and Application on Automotive Aluminum Bumper Based on Topology Optimization

Article Preview

Abstract:

Based on the explicit dynamic finite element analysis software, the use of hybrid cellular automata (HCA) as an optimization model, the collision of beams in the aluminum front structure optimization design. The 6061 aluminum alloy before the collision of beams to replace a model of the original steel beams, trolley collision simulation and experimental validation of the results show that the aluminum front impact beams than the original steel before the collision beam quality to reduce by 25% and has a higher flexural strength, low-speed collision, aluminum front impact beams than the original steel system energy absorption increased by 45.6%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

495-499

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ZHONG Zhi-hua, ZHANG Wei-gang. Automobile Crash Safety Technology[M]. Beijing: China Machine Press, 2005: 1-41.

Google Scholar

[2] CAO Li-bo, DING Hai-jian, LI Ke, CUI Chong-zhen. Computational Simulation and Test Study of an Extendable and Retractable Automobile Crash Energy Absorbing Device[J]. China Mechanical Engineering, 2009, 20(17): 2131-2137.

Google Scholar

[3] WANG Zhu-tang, TIAN Rong-zhang. Aluminum alloy and processing manual[M]. Changsha: Central South University Press, 2005: 251-262.

Google Scholar

[4] ZHANG Z H, LIU S T, TANG Z L. Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam[J]. Thin-Wall Structure, 2009, 47: 868-878.

DOI: 10.1016/j.tws.2009.02.009

Google Scholar

[5] KIM Y I, PARK G J. Nonlinear dynamic response structural optimization using equivalent static loads[J]. Comput. Methods Appl. Mech. Engrg, 2010, 199: 660-676.

DOI: 10.1016/j.cma.2009.10.014

Google Scholar

[6] GOEL T, STANDER N. Adaptive Simulated Annealing for Global Optimization in LS-OPT[C]/ 7th European LS-DYNA Conference. USA: LSTC, (2009).

Google Scholar

[7] ZHANG Yong, LI Guang-yao, SUN Guang-yong. Research on Multidisciplinary Design Optimization of Vehicle Body Crashworthiness and Noise, Vibration and Harshness[J]. China Mechanical Engineering, 2008, 19(14): 1760-1763.

Google Scholar

[8] GOEL T, ROUX W, STANDER N. A Topology Optimization Tool for LS-DYNA User: LS-OPT/ Topology[C]/ 7th European LS-DYNA Conference. USA: LSTC, (2009).

Google Scholar

[9] YU J., Zhao Y, Weighted Approximation of Functions with Singularity by q-Baskakov Operators, IEIT Journal of Adaptive & Dynamic Computing, 2012(2), Apr 2012, pp: 5-11. DOI=10. 5813/www. ieit-web. org/IJADC/2012. 2. 2.

DOI: 10.5813/www.ieit-web.org/ijadc/2012.2.2

Google Scholar

[10] Zhao C.H., Zhang J., Zhong X.Y., Chen S.J., Liu X. M, Analysis of Tower Crane Monitoring and Life Prediction, IEIT Journal of Adaptive & Dynamic Computing, 2012(2), Apr 2012, pp: 12-16. DOI=10. 5813/www. ieit-web. org/IJADC/2012. 2. 3.

DOI: 10.5813/www.ieit-web.org/ijadc/2012.2.3

Google Scholar

[11] TAN Xiao-hong. Finite Element Method in Impact Analysis and Structure Optimization of Automobile's Bumper[D]. Shanghai: Shanghai University, (2003).

Google Scholar

[12] SONG You-gui, CHEN Ling, TIAN Shou-xin, WANG Yun. A Comparative Study on Lightweighted Mirror Structure Design[J]. Acta Armamentarii, 2000, 21(2): 137-139.

Google Scholar

[13] Zhao Z.L., Liu B., Li W, Image Clustering Based on Extreme K-means Algorithm, IEIT Journal of Adaptive & Dynamic Computing, 2012(1), Jan 2012, pp: 12-16. DOI=10. 5813/www. ieit-web. org/IJADC/2012. 1. 3.

DOI: 10.5813/www.ieit-web.org/ijadc/2012.1.3

Google Scholar

[14] Zheng L.P., Hu X.M., Guo M, On the q-Szasz Operators on Two Variables, IEIT Journal of Adaptive & Dynamic Computing, 2012(1), Jan 2012, pp: 17-21. DOI=10. 5813/www. ieit-web. org/IJADC/2012. 1. 4.

DOI: 10.5813/www.ieit-web.org/ijadc/2012.1.4

Google Scholar