Microstructure Evolution of Hydrogenated Ti6Al4V Alloy during Compression

Article Preview

Abstract:

Compression tests of the hydrogenated Ti6Al4V0.2H alloy were carried out using an Instron 5569 machine at room temperature. True stress-strain curves of the hydrogenated Ti6Al4V0.2H alloy under different compressive strains were obtained. Microstructure evolution of the hydrogenated Ti6Al4V0.2H alloy during the process of compression was investigated by optical microscopy and transmission electron microscopy. Results show that true stress-true strain curves of Ti6Al4V0.2H alloy have good repeatability. The deformation of grains, the dislocation density and slipping evolution during the process of compression are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

517-521

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Arruebarrena, I. Hurtado, J. Vainola, C. Cingi, S. Devenyi, J. Townsend, S. Mahmood, A. Wendt, K. Weiss and A. Ben-Dov, Adv. Eng. Mater. 9, 751 (2007)

DOI: 10.1002/adem.200700154

Google Scholar

[2] T.F. Morgeneyer, Marco J. Starink and I. Sinclair, Mater. Sci. Forum. 519-520, 1023 (2006)

Google Scholar

[3] I.J. Polmear, Mater. Trans., JIM. 37, 12 (1996)

Google Scholar

[4] J. Zhang, X.F. Zhang, W.G. Li, F.S. Pan and Z.X. Guo, Scr. Mater. 63, 367 (2010)

Google Scholar

[5] F.H. Froes, O.N. Senkov, J.O. Qazi, Int. Mater. Rev. 49, 227 (2004)

Google Scholar

[6] B.G. Yuan, C.F. Li, H.P. Yu and D.L. Sun, Mater. Sci. Eng., A 527, 4185 (2010)

Google Scholar

[7] Z.D. Zhao, Q. Chen, H.Y. Chao, C.K. Hu and S.H. Huang, Mater. Des. 32, 575 (2011)

Google Scholar

[8] G.Q. Zhao, S.B. Xu, Y.G. Luan, Y.J. Guan, N. Lun, X.F. Ren, Mater. Sci. Eng., A 437, 281 (2006)

Google Scholar

[9] Q. Chen, Z.D. Zhao, Z.X. Zhao, C.K. Hu and D.Y. Shu, J. Alloys Compd. 509, 7303 (2011)

Google Scholar

[10] L.X. Hu, Y.P. Li, E.D. Wang and Y. Yu, Mater. Sci. Eng. A 422, 327 (2006)

Google Scholar

[11] Q. Chen, Z.X. Zhao, D.Y. Shu and Z.D. Zhao, Mater. Sci. Eng. A 528, 3930 (2011)

Google Scholar

[12] Q. Chen, D.Y. Shu, C.K. Hu, Z.D. Zhao and B.G. Yuan, Mater. Sci. Eng. A 541, 98 (2012)

Google Scholar

[13] S. Biswas and S. Suwas, Scr. Mater. 66, 89 (2012)

Google Scholar

[14] Z.D. Zhao, Q. Chen, Y.B. Wang and D.Y. Shu, Mater. Sci. Eng. A 515, 152 (2009)

Google Scholar

[15] D. Eliezer, N. Eliaz, O.N. Senkov and F.H. Froes, Mater. Sci. Eng. A 280, 220 (2000)

Google Scholar

[16] N. Eliaz, D. Eliezer and D.L. Olson, Mater. Sci. Eng. A 289, 41 (2000)

Google Scholar

[17] O.N. Senkov, and F.H. Froes, Int. J. Hydrogen Energy 24, 565 (1999)

Google Scholar

[18] C.P. Liang and H.R. Gong, Int. J. Hydrogen Energy 35, 3812 (2010)

Google Scholar

[19] J.W. Zhao, H. Ding, Y.R. Zhong and C.S. Lee, Int. J. Hydrogen Energy 35, 6448 (2010)

Google Scholar

[20] Y. Niu and M.Q. Li, Metall. Mater. Trans. A 40A, 3009 (2009)

Google Scholar

[21] Z.G. Sun, G.Q. Chen, Y.Q. Wang, W.L. Zhou and H.L. Hou, Mater. Sci. Eng. A 527, 1003 (2010)

Google Scholar

[22] Y.X. Chen, X.J. Wan, F. Li, Q.J. Wang and Y.Y. Liu, Mater. Sci. Eng. A 466, 156 (2007)

Google Scholar

[23] M.Q. Li and W.F. Zhang, Int. J. Hydrogen Energy 33, 2714 (2008)

Google Scholar

[24] S.Q. Zhang and L.R. Zhao, J. Alloys Compd. 218, 233 (1995)

Google Scholar

[25] B.G. Yuan, H.P. Yu, C.F. Li and D.L. Sun, Int. J. Hydrogen Energy 35, 1829 (2010)

Google Scholar