[1]
Y.Q. Jia, B. Zhang, X.M. Chen. The fault mechanism and diagnosis of the rolling bearing, Chemical Equipment Technology, 2011, 32(4), pp.55-57.
Google Scholar
[2]
F.F. Chen, B.P. Tang, S.J. Dong. Rotation machinery fault diagnosis based on particle swarm optimization LS-WSVM, Chinese Journal of Scientific Instrument, 2011, 32(12), pp.2747-2753.
Google Scholar
[3]
G. Chen. Rolling bearing fault surface damage intelligent diagnosis new methods, Chinese Journal of Scientific Instrument, 2009, 30(1), pp.44-49.
Google Scholar
[4]
Y. SH. Yang. The application of multichannel information fusion technology in fault diagnosis, Optical and electrical information, 2011, 28(3), pp.52-57.
Google Scholar
[5]
Q. Liu, SH.G. Zhang, SH.P. Qi. The new methods of modern analog fault diagnosis, Information and Electronic Engineering, 2006, 4(6), pp.476-480.
Google Scholar
[6]
L. Zhang, X.Y. Lu, Y.H. Wu, SH. ZH. Hao. The improved algorithm based on rough set the heuristic value reduction, Chinese Journal of Scientific Instrument, 2009, 30(1), pp.82-85.
Google Scholar
[7]
Y. Min, Y.N. Guo, J.R. Yan. The application of rough set theory in rolling bearing fault diagnosis, Industrial Automation, 2010(5), pp.51-54.
Google Scholar
[8]
D.F. Zhang, ZH.Q. Wang, J. SH. Sun, SH.S. Hu. Fault diagnosis knowledge extraction method of based on the probability of rough sets theory, Chinese Journal of Scientific Instrument, 2004, 25(5), pp.600-603.
Google Scholar
[9]
ZH. Zhao, X.F. Hu, D.K. He, F.L. Wang. Knowledge acquisition of water pressure test enginery fault diagnosis expert system, Northeast university journal, 2008, 29(12), pp.1677-1680.
Google Scholar
[10]
G. H Li, Y. ZH. Zhang. Mechanical fault diagnosis, Beijing: Chemical Industry Press, (1999).
Google Scholar
[11]
J.Q. Hu, L.B. Zhang, W. Liang. Degradation Assessment of Bearing Fault using SOM Network, 2011 Seventh International Conference on Natural Computation, 2011, pp.580-584.
DOI: 10.1109/icnc.2011.6021914
Google Scholar
[12]
B. Zhang. Cui, Z. B Wang, H. X Pan. Wavelet analysis -fuzzy clustering method used in rolling bearing fault diagnosis, Vibration, Test and Diagnosis, 2008, 28(2), pp.151-154.
Google Scholar
[13]
X.D. Wang, Y. Y Zi , ZH.J. He. Multiwavelet denoising with improved neighboring coefficients for application on rolling bearing fault diagnosis, Mechanical Systems and Signal Processing, 2011, pp.285-304.
DOI: 10.1016/j.ymssp.2010.03.010
Google Scholar
[14]
Q.H. Zeng, J. Qiu, G.J. Liu. Early fault feature extraction method Based on wavelet correlation filtering-envelope analysis, Chinese Journal of Scientific Instrument, 2008, 29(4): 729-733.
Google Scholar
[15]
B. Li, P.L. Zhang, D. SH. Liu, SH. SH Mi, G.Q. Ren, H. Tian. Feature extraction for rolling element bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization, Journal of Sound and Vibration, 2010, pp.1-12.
DOI: 10.1016/j.jsv.2010.11.019
Google Scholar
[16]
H. Q Wang, P. Chen. Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network, Computers & Industrial Engineering, 2011, pp.1-8.
DOI: 10.1016/j.cie.2010.12.004
Google Scholar
[17]
T. Matsuura. An application of neural network for selecting feature parameters in machinery diagnosis, Journal of Materials Processing Technology, 2004, pp.203-207.
DOI: 10.1016/j.jmatprotec.2004.09.030
Google Scholar
[18]
B.D. Qiao, G. Chen, K.Y. Ge, X.X. Qu. A new method of rolling bearing fault knowledge acquisition, Bearing, 2011(2), pp.39-44.
Google Scholar