Microcrystal Growth in Heat-Treating Process for Europium Ions Doped Aluminosilicate Glasses

Article Preview

Abstract:

Eu doped YAG glass ceramics containing single phase of YAG micro-cryatals have been obtained by heat-treating the aluminosilicate precursor glasses. The primary crystallite size of YAG phase is calculated to be ~46 nm and the crystal grains grow with preffered orientation (444) in the internal network. The average secondary particle size is estimated to be ~8μm and the larger grain size is due to the particle aggregation. The pilotaxitic texture of YAG glass ceramics presented in SEM micrograph, can increase yield strength and tensile strength of the sample effectively. The emission spectrum of Eu doped YAG glass ceramics consists of a broad blue emission band and several narrow emission bands, indicating the coexistence of Eu3+ and Eu2+ ions in YAG glass ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

462-465

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.N. Xie, Z.M. Yang. Systhesis and characterization of mono-dispersed Y3Al5O12: Er3+-cocated nanoparticles by co-precipitation process. J. Nanopart. Res. 13 (2011) 347-354.

DOI: 10.1007/s11051-010-0036-x

Google Scholar

[2] C.T. Wu, Y.L. Ju, Q. Wang, Z.G. Wang, B.Q. Yao, Y.Z. Wang. Injection-seeded Tm: YAG laser at room temperature. Opt. Commun. 284 (2011) 994-998.

DOI: 10.1016/j.optcom.2010.10.019

Google Scholar

[3] W. Zhao, S. Anghel, C. Mancini, D. Amans, G. Boulon, T. Epicier, Y. Shi, X.Q. Feng, Y.B. Pan,V. Chani, A. Yoshikawa. Ce3+ doped segregation in Y3Al5O12 optical ceramics. Opt. Mater. 33 (2011) 684-687.

DOI: 10.1016/j.optmat.2010.10.007

Google Scholar

[4] X.P. Qin, G.H. Zhou, H. Yang, J.I. Wong, J. Zhang, D.W. Luo, S.W. Wang, D.Y. Tang. Fabrication and plasma resistance properties of transparent YAG ceramics. Ceram. Int. 38 (2012) 2529-2535.

DOI: 10.1016/j.ceramint.2011.11.023

Google Scholar

[5] W. Zhang, T.C. Lu, N. Wei, Y.Z. Wang, B.Y. Ma, F. Li, Z.W. Lu. Assessment of light scattering by pores in Nd: YAG transparent ceramics. J. Alloy. Compd. 520 (2012) 36-41.

DOI: 10.1016/j.jallcom.2011.12.012

Google Scholar

[6] J.X. Meng, M.F. Zhang, Y.L. Liu, S.Q. Man. Hydrothermal preparation and luminescence of LaF3: Eu3+ nanooparticles. Spectrochim. Acta A 66 (2007) 81-85.

Google Scholar

[7] S.K. Shi, J.Y. Wang. Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles. J. Alloy. Compd. 327 (2001) 82-86.

Google Scholar

[8] Y. Tian, B.J. Chen, R.N. Hua, J.S. Sun, L.H. Cheng, H.Y. Zhong, X.P. Li, J.S. Zhang, Y.F. Zheng, T.T. Yu, L.B. Huang, H.Q. Yu. Optical transition, electron-phonon coupling and fluorescent quenching of La2(MoO4)3: Eu3+ phosphor. J. Appl. Phys. 109 (2011).

DOI: 10.1063/1.3551584

Google Scholar

[9] D.Q. Chen, Y.L. Yu, P. Huang, F.Y. Weng, H. Lin, Y.S. Wang. Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals. Appl. Phys. Lett. 94 (2009) 0419091-0419093.

DOI: 10.1063/1.3076111

Google Scholar

[10] J.L. Zhang, X.G. Zhang, M.L. Gong, J.X. Shi, L.P. Yu, C.Y. Rong, S.X. Lian. LiSrO3: Eu2+: A novel broadband phosphor under excitation of a blue light. Mater. Lett. 79 (2012) 100-102.

DOI: 10.1016/j.matlet.2012.04.011

Google Scholar

[11] Y. Zhou, J. Lin, M. Yu, S. Wang. Comparative study on the luminescence properties of Y3Al5O12: RE3+ (RE: Eu, Dy) phosphors synthesized by three methods. J. Alloy. Compd. 375 (2004) 93-97.

DOI: 10.1016/j.jallcom.2003.10.057

Google Scholar

[12] G.H. Liu, J.T. Li, S.B. Guo, X.S. Ning, Y.X. Chen. Melt-casting of Y3Al5O12 (YAG) ceramics by combustion synthesis under high gravity with the addition of glass. J. Alloy. Compd. 45 (2010) 1157-1161.

DOI: 10.1016/j.jallcom.2011.03.145

Google Scholar

[13] L.F. Shen, X. Liu, B.J. Chen, E.Y.B. Pun, H. Lin. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses. J. Phys. D: Appl. Phys. 45 (2012) 115301-115307.

DOI: 10.1088/0022-3727/45/11/115301

Google Scholar