[1]
Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. 2006. Chinese Named Entity Recogniton with Conditional Random Fields. In SIGHAN-5, pages 118-121, Sydney, Australia, July22-23.
Google Scholar
[2]
Burr Settles. Biomedical Named Entity Recognition Using Conditional Random Fields and Rich Feature Sets. COLING, (2004).
DOI: 10.3115/1567594.1567618
Google Scholar
[3]
Shaojun Zhao. Named Entity Recognition in Bilmedical Texts using an HMM Model. JNLPB, (2004).
Google Scholar
[4]
Hai Leong Chieu, Hwee Tou NG. Named Entity Recognition: A Maximum Entropy Approach Using Global Information. COLING, Taipei, Taiwan, (2002).
DOI: 10.3115/1072228.1072253
Google Scholar
[5]
BERNERS-LEE T,HENDLER J,LASSILA O. The Semantic Web[J]. Scientific American, 2001,284(5):34-43.
DOI: 10.1038/scientificamerican0501-34
Google Scholar
[6]
Hanna M. Wallach, Conditional Random Fields: An Introduction. Technical Report MS-CIS-04-21. Department of Computer and Information Sciende, University of PENNSylvania, (2004).
Google Scholar
[7]
Lafferty J, McCallum A, Pereira F. Conditional random fiels: Probabilistic models for segmenting and labeling sequence data[C]. /Broadley C, Danyluk A, eds. Proc. of the 18th Int'1 Conf. on Machine Learning (ICML-01). Williams College: Morgan Kaufmann Publishers, 2001: 282-289.
DOI: 10.1145/1015330.1015422
Google Scholar
[8]
Dongjian Liao, Dayuan Cao, Xinying Li. Information Extraction Based on Ontology[J]. Computer Enginnering and Applications, 2002(5):8-15.
Google Scholar
[9]
Xianyi Cheng, Qian Zhu, Jin Wang. Chinese Information Extraction Principle and Apllication[M](in chinese). Beijing Science Publishing House, 2010: 151-182.
Google Scholar
[10]
Guanming Zeng. CRFs-based Chinese Named Enitity Recognition with Improved Tag Set[D]. Beijing: Beijing University of Posts and Telecommunications, (2009).
DOI: 10.1109/csie.2009.551
Google Scholar
[11]
Gloria L Zuniga. Ontology: Its Transformation form Philosophy to Informationn Systems[C]. Proceedings of the International Conference on Formal Ontology in Information Systems, 2001: 187-197.
DOI: 10.1145/505168.505187
Google Scholar
[12]
Sumin Shi. Chinese Coreference Resoulution and Related Technical Research Based on Domain Ontology[D], NanJing: Nanjing University of Science and Technology, (2008).
Google Scholar
[13]
Mei Wang. Research of The Constructing Methods on OWL Ontology[J]. Library and Information Service, 2006, (12): 30-33.
Google Scholar
[14]
Jing Ma, Qingqing Song, Sifeng liu. The Comprehensive Construction and Evolution of Domain Ontology[J]. Journal of the China Society for Scientific and Technical Information, 2007, 26(6): 827-832.
DOI: 10.1109/gsis.2007.4443395
Google Scholar
[15]
Hai Zhao, Chunyu Kit. Unsupervised Segmentation Helps Supervised Learning of Character Tagging for Word Segmentation and Named Entity Recognition. The Sixth SIGHAN Workshop on Chinese Language Processing(SIGHAN-6), pp.106-111, Hyderabad, India, Januarey 11-12, (2008).
DOI: 10.1109/icmlc.2009.5212769
Google Scholar
[16]
Guangjing Jin, Xiao Chen. The Fourth International Chinese Language Processing Bakeoff: Chinese Word Segmentation, Named Entity Recognition and Chinese POS Tagging . The Sixth SIGHAN Workshop on Chinese Language Procdssing. pp.69-81.
DOI: 10.3115/1119250.1119276
Google Scholar
[17]
The Sogou Lab. http: /www. sogou. com/labs.
Google Scholar