[1]
P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar, Norwood, MA: Horizon House Artech, (2004).
Google Scholar
[2]
P. D. Sutton, K. E. Nolan and L. E. Doyle, Cyclostationary Signatures in Practical Cognitive Radio Applications, Selected Areas in Communications, IEEE Journal on, vol. 26, pp.13-24, (2008).
DOI: 10.1109/jsac.2008.080103
Google Scholar
[3]
W. Jiandong, C. Tongwen and H. Biao, Cyclo-period estimation for discrete-time cyclo-stationary signals, Signal Processing, IEEE Transactions on, vol. 54, pp.83-94, (2006).
DOI: 10.1109/tsp.2005.859237
Google Scholar
[4]
K. -S. Lii and M. Rosenblatt, Estimation for almost periodic pro-cesses, Ann. Statist., vol. 34, no. 3, p.1115–1139, (2006).
Google Scholar
[5]
T. O. Gulum, P. E. Pace, Extraction of Polyphase Radra Modulation Parameters Using a Wigner-Ville Distribution-Radon Transform, IEEE International Conf. on Acoustics, Speech and Signal Processing, Las Vegas, NV, March (2008).
DOI: 10.1109/icassp.2008.4517907
Google Scholar
[6]
Gardner, W. A., Statistical Spectral Analysis: A Nonprobabilistic Theory, Prentice-Hall, Englewood Cliffs, NJ, (1987).
Google Scholar
[7]
R. S. Roberts, W. A. Brown and Jr. H. H. Loomis, Computationally efficient algorithms for cyclic spectral analysis, Signal Processing Magazine, IEEE, vol. 8, pp.38-49, (1991).
DOI: 10.1109/79.81008
Google Scholar
[8]
Gardner, W. A, Signal interception: A unifying theoretical framework for feature detection, IEEE Trans. on Communications, vol. 36, No. 8, pp.897-906, Aug. (1988).
DOI: 10.1109/26.3769
Google Scholar
[9]
Antonio F. Lima, Jr. Analysis of low probability of intercept radar signals using cyclostationary processing", Naval Postgraduate School Master, s thesis, Sept. (2002).
Google Scholar
[10]
T. O. Gulum, Autonomous Nonlinear Classification of LPI Radar Signal Modulations, Naval Postgraduate School Masters Thesis, Sept. (2007).
Google Scholar
[11]
Dobre O.A. Abdi. A, Bar-Ness.Y. Su, W. Survey of automatic modulation classification techniques: classical approaches and new trends, Communications, lET, volume 1, pp.137-156, (2007).
DOI: 10.1049/iet-com:20050176
Google Scholar
[12]
A. V. Dandawate and G. B. Giannakis, Asymptotic Theory of Mixed Time Averages and kth Order CyclicMoments and Cumulant Statistics, IEEE Trans. Inform. Theory, vol. 41, p.216–232, January (1995).
DOI: 10.1109/18.370106
Google Scholar
[13]
Antonio Napolitano, Discrete-Time Estimation of Second-Order Statistics of Generalized Almost-Cyclostationary Processes, IEEE Trans on signal processing, vol. 57, No. 5, May (2009).
DOI: 10.1109/tsp.2009.2013889
Google Scholar
[14]
A. Napolitano, On the spectral correlation measurement of non-stationary stochastic processes, in Proc. 2001 Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on, pp.898-902.
DOI: 10.1109/acssc.2001.987052
Google Scholar