[1]
van Breugel, K., Ye, G. Multi-scale modelling: The vehicle for progress in fundamental and practice-oriented research., 2nd International Symposium nanotechnology in construction, Bilbao, (2005).
Google Scholar
[2]
Wittmann, F.H., Structure and mechanical properties of concrete, The Arachitectural report of the Tohoku University, (1983).
Google Scholar
[3]
Kwon, Y.W., Allen, D.H., and Talreja, R., eds. Multiscale modeling and simulation of composite materials and structures. 2007, Springer Science Business Media, LLC: New York.
Google Scholar
[4]
K. Maekawa, T. Ishide, and T. Kishi., Multi-scale modeling of concrete performance -integrated material and structural mechanics, Journal of Advanced Concrete Technology, Vol. 1, pp.91-126, (2003).
DOI: 10.3151/jact.1.91
Google Scholar
[5]
Pichler, C., Lackner, R., and Mang, H.A., A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials, Engineering Fracture Mechanics, Vol. 74, pp.34-58, (2007).
DOI: 10.1016/j.engfracmech.2006.01.034
Google Scholar
[6]
Xi, Y., Jennings, H.M., Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory , Materials and Structures, Vol. 30, pp.329-339, (1997).
DOI: 10.1007/bf02480683
Google Scholar
[7]
Lopez, M. Creep and shrinkage of high performance lightweight concrete: A multi-scale investigation ,. Ph. D Thesis. Georgia Institute of Technology, (2005).
Google Scholar
[8]
Bernard, O., Ulm, F. -J., and Lemarchand, E., A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cement and Concrete Research, Vol. 33, pp.1293-1309, (2003).
DOI: 10.1016/s0008-8846(03)00039-5
Google Scholar
[9]
Ulm, F. -J., Constantinides, G., and Heukamp, F.H., Is concrete a poromechanics materials? - a multiscale investigation of poroelastic properties, " Material, r andStrucmres / Concrete Science and Engineering, Vol. 37, pp.43-58, (2004).
DOI: 10.1007/bf02481626
Google Scholar
[10]
Nadeau, J.C., A multiscale model for effective moduli of concrete incorporating itz water–cement ratio gradients, aggregate size distributions, and entrapped voids, Cement and Concrete Research, Vol. 33, pp.103-113, (2003).
DOI: 10.1016/s0008-8846(02)00931-6
Google Scholar
[11]
K. Maekawa, R. Chaube, and T. Kishi, Modelling of concrete performance: Hydration, microstructure formation, and mass transport. 1999: Taylor & Francis.
Google Scholar
[12]
T. Ishide, K. Maekawa, and Soltani., M., Theoretically identified strong coupling of carbonation rate and thermodynamic moisture states in micropores of concrete, Journal of Advanced Concrete Technology, Vol. 2, pp.213-222, (2004).
DOI: 10.3151/jact.2.213
Google Scholar
[13]
T. Ishide, K. Maekawa., An integrated computational system for mass/energy generation, transport, and mechanics of materials and structures, JSCE, Vol. 44, (1999).
Google Scholar
[14]
Grötschel, M., Lucas, K., and Mehrmann, V., Production factor mathematic. 1st ed. 2010: Springer.
Google Scholar
[15]
Xi, Y., Willam, K., and Frangopol, D.M., Multiscale modeling of interactive diffusion processes in concrete, Journal of Engineering Mechanics, Vol. 126, pp.258-265, (2000).
DOI: 10.1061/(asce)0733-9399(2000)126:3(258)
Google Scholar
[16]
Bentz, D.P., Influence of silica fume on diffusivity in cement-based materials. Ii. Multi-scale modeling of concrete diffusivity, Cement and Concrete Research, Vol. 30, pp.1121-1129, (2000).
DOI: 10.1016/s0008-8846(00)00263-5
Google Scholar
[17]
Bentz, D.P., et al. Multi-scale modelling of the diffusivity of mortar and concrete., RILEM International Conference on Chloride Intrusion into Concrete 1995. 85-94.
DOI: 10.1617/2912143454.011
Google Scholar
[18]
Bentz, D.P., et al. Multi-scale digital-image-based modelling of cement-based materials., MRS Proceedings, ibid 1995. 33-42.
Google Scholar
[19]
Bentz, D.P., Garboczi, E.J., and Lagergren, E.S., Multi-scale microstructural modelling of concrete diffusivity: Identification of significant variables, Cement, Concrete, and Aggregates, Vol. 20, pp.129-139, (1998).
DOI: 10.1520/cca10446j
Google Scholar
[20]
Garboczi, E.J., Bentz, D.P., Multi-scale analytical/numerical theory of the diffusivity of concrete, Advanced Cement Based Materials, Vol. 8, pp.77-88, (1998).
DOI: 10.1016/s1065-7355(98)00010-8
Google Scholar
[21]
Smilauer, V.,T. Krejci, Multiscale model for temperature distribution in hydrating concrete in hydrating concrete, International Journal for Multiscale Computational Engineering, Vol. 7, (2009).
DOI: 10.1615/intjmultcompeng.v7.i2.50
Google Scholar
[22]
Smilauer, V., Bittnar, Z., Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste, Cement and Concrete Research, Vol. 36, pp.1708-1718, (2006).
DOI: 10.1016/j.cemconres.2006.05.014
Google Scholar
[23]
Bentz, D.P., Three-dimensional computer simulation of portland cement hydration and microstructure development, Journal of the American Ceramic Society, Vol. 8, pp.3-21, (1997).
DOI: 10.1111/j.1151-2916.1997.tb02785.x
Google Scholar
[24]
Bentz, D.P., Guide to using cemhyd3d: A three-dimensional cement hydration and microstructure development modelling package, NISTR 5977, (1997).
DOI: 10.6028/nist.ir.5977
Google Scholar
[25]
Lepenies, I.G., Richter, M., and Zastrau, B., A multi-scale analysis of textile reinforced concrete structures, Proc. Appl. Math. Mech, Vol. 8, pp.10553-10554, (2008).
DOI: 10.1002/pamm.200810553
Google Scholar
[26]
Lim, J.H., et al., Variable-node finite elements with smoothed integration techniques and their applications for multiscale mechanics problems, Computers and Structures, Vol. 88, pp.413-425, (2010).
DOI: 10.1016/j.compstruc.2009.12.004
Google Scholar
[27]
Lackner, R., Multiscale prediction of viscoelastic properties of asphalt concrete, Journal of Materials in Civil Engineering, Vol. 21, pp.771-780, (2009).
DOI: 10.1061/(asce)0899-1561(2009)21:12(771)
Google Scholar