Evaluation of Causal Influences in Model of Motor Control in Left Hands Movement-Readiness State

Article Preview

Abstract:

The previous research revealed some functional coupling among nodes in model of motor control in human brain, which described nondirectional synchronous actions among these nodes during movement-readiness state. However, causal relationships among these nodes were still lack, which represented some directional interactions among these nodes in movement-readiness state. In the present study, we used functional magnetic resonance imaging (fMRI) and conditional Granger causality (CGC) method to investigate the interactions in model of motor control in movement-readiness state. Our result showed that upper precuneus and cingulate motor area revealed net causal influences with contralateral supplementary motor areas and contralateral caudate nucleus during the left hands movement-readiness state. Moreover, the results of Out-In degrees indicated that bilateral primary sensorimotor areas revealed competitive relationship during left hands movement-readiness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-423

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.T. Newton, V. L. Morgan, and J. C. Gore, Task demand modulation of steady-state functional connectivity to primary motor cortex, Hum Brain Mapp, vol. 28, pp.663-672, (2007).

DOI: 10.1002/hbm.20294

Google Scholar

[2] C. Grefkes, S. B. Eickhoff, D. A. Nowak et al, Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM, Neuroimage, vol. 41, pp.1382-94, (2008).

DOI: 10.1016/j.neuroimage.2008.03.048

Google Scholar

[3] S. Treserras, K. Boulanouar, F. Conchou et al, Transition from rest to movement: brain correlates revealed by functional connectivity, Neuroimage, vol. 48, pp.207-216, (2009).

DOI: 10.1016/j.neuroimage.2009.06.016

Google Scholar

[4] V. B. Brooks, The neural basis of motor control, Oxford University Press, Oxford, (1986).

Google Scholar

[5] A. Solodkin, P. Hlustik, E. E. Chen et al, Fine modulation in network activation during motorexecution and motor imagery, Cereb Cortex, vol. 14, pp.1246-1255, (2004).

DOI: 10.1093/cercor/bhh086

Google Scholar

[6] L. Q. Uddin, A. M. C. Kelly, B. B. Biswal et al, Functional connectivity of default mode network components: correlation, anticorrelation, and causality, Hum. Brain Mapp. vol. 30, pp.625-637, (2009).

DOI: 10.1002/hbm.20531

Google Scholar

[7] M. Ding, Y. Chen, and S. L. Bressler, Granger Causality: Basic Theory and Application to Neuroscience, Verlage: Wiley-VCH, (2006).

Google Scholar

[8] W. Liao, D. Mantini, Z. Zhang et al, Evaluating the effective connectivity of resting state networks using conditional Granger causality, Biol Cybern. vol. 102, pp.57-69, (2009).

DOI: 10.1007/s00422-009-0350-5

Google Scholar

[9] V. D. Calhoun, T. Adali, G. D. Pearlson et al, A method for making group Inferences from functional MRI data using independent component analysis, Hum Brain Mapp, vol. 14, pp.140-151, (2001).

DOI: 10.1002/hbm.1048

Google Scholar

[10] R. Goebel, A. Roebroeck, D. Kim et al, Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping, Magn. Reson. Imaging, vol. 21, pp.1251-1261, (2003).

DOI: 10.1016/j.mri.2003.08.026

Google Scholar

[11] A. Roebroeck, E. Formisano, and R. Goebel, Mapping directed influence over the brain using Granger causality and fMRI, NeuroImage, vol. 25, pp.230-242, (2005).

DOI: 10.1016/j.neuroimage.2004.11.017

Google Scholar

[12] B. Efron, R. J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, NewYork, (1993).

Google Scholar

[13] W. Schultz, P. Apicella, E. Scarnati et al, Neuronal activity in monkey ventral striatum related to the expectation of reward, J Neurosci, vol. 12, pp.4595-4610, (1992).

DOI: 10.1523/jneurosci.12-12-04595.1992

Google Scholar

[14] O. Devinsky, M. J. Morrell, and B. A. Vogt, Contributions of anterior cingulate cortex to behaviour, Brain, vol. 118, pp.279-306, (1995).

DOI: 10.1093/brain/118.1.279

Google Scholar

[15] J. Parvizi, G. W. Van Hoesen, J. Buckwalter et al, Neural connections of the posteromedial cortex in the macaque, Proc Natl Acad Sci USA, vol. 103, pp.1563-1568, (2006).

DOI: 10.1073/pnas.0507729103

Google Scholar

[16] N. Sadato, G. Campbell, V. Ibanez et al, Complexity affects regional cerebral blood flow change during sequential finger movements, J Neurosci, vol. 16, pp.2691-2700, (1996).

DOI: 10.1523/jneurosci.16-08-02691.1996

Google Scholar

[17] T. Ogiso, K. Kobayashi. and M. Sugishita, The precuneus in motor imagery: a magnetoencephalographic study, Neuroreport, vol. 11, pp.1345-1349, (2000).

DOI: 10.1097/00001756-200004270-00039

Google Scholar

[18] K. Oishi, K. Toma, E. Bagarinao et al, Activation of the precuneus is related to reduced reaction time in serial reaction time tasks, Neurosci Res, vol. 52, pp.37-45, (2005).

DOI: 10.1016/j.neures.2005.01.008

Google Scholar

[19] A. E. Cavanna, and M. R. Trimble, The precuneus: a review of its functional anatomy and behavioural correlates, Brain, vol. 129, pp.564-583, (2006).

DOI: 10.1093/brain/awl004

Google Scholar

[20] S. N. Haber, The primate basal ganglia: parallel and integrative networks, J Chem Neuroanat., vol. 26, pp.317-330, (2003).

DOI: 10.1016/j.jchemneu.2003.10.003

Google Scholar

[21] S. Lehericy, E. Bardinet, L. Tremblay et al, Motor control in basal ganglia circuits using fMRI and brain atlas approaches, Cereb Cortex, vol. 16, pp.149-161, (2006).

DOI: 10.1093/cercor/bhi089

Google Scholar

[22] A. Martino, A. Scheres, D. S. Margulies et al, Functional Connectivity of Human Striatum: A Resting State fMRI Study, Cereb Cortex, vol. 18, pp.2735-2747, (2008).

DOI: 10.1093/cercor/bhn041

Google Scholar

[23] E. T. Rolls, Neurophysiology and cognitive functions of the striatum, Rev Neurol (Paris), vol. 150, pp.648-660, (1994).

Google Scholar

[24] N. U. Dosenbach, K. M. Visscher, E. D. Palmer et al, A core systemfor the implementation of task sets, Neu-ron, vol. 50, pp.799-812, (2006).

Google Scholar

[25] N.U. Dosenbach, D. A. Fair, F. M. Miezin et al, Distinct brain networks for adaptive and stable task control in humans, ProcNatlAcad Sci USA, vol. 104, pp.1073-11078, (2007).

DOI: 10.1073/pnas.0704320104

Google Scholar

[26] D. Mantini, M. Corbetta,M. G. Perrucci et al, Large-scale brain networks account for sustained and transient activity during target detection, Neuroimage, vol. 44, pp.265-274, (2009).

DOI: 10.1016/j.neuroimage.2008.08.019

Google Scholar

[27] M. D. Fox, A. Z. Snyder, J. L. Vincent et al, The human brain is intrinsically organized into dynamic, anticorrelated functional networks, Proc Natl Acad Sci USA, vol. 102, pp.9673-9678, (2005).

DOI: 10.1073/pnas.0504136102

Google Scholar

[28] H. Boecker, J. Jankowski, P. Ditter et al, A role of the basal ganglia and midbrain nuclei for initiation of motor sequences, NeuroImage, vol. 39, pp.1356-1369, (2008).

DOI: 10.1016/j.neuroimage.2007.09.069

Google Scholar