Lattice Boltzmann Simulation of High Reynolds Number Flow around Blade Hydrofoil of Tidal Current Energy Conversion Device

Article Preview

Abstract:

Blade hydrofoil has a vital impact on efficiency of energy conversion of hydro turbine which is the core device in harnessing tidal current energy. In this paper, lattice Boltzmann method, combined with large eddy simulation (LBM-LES), where Smagorinsky model adopted, was proposed to simulate and analyze the performance of blade hydrofoil in tidal current flow with high Reynolds number in engineering application and solved the problem of instability when simulating flow with high Reynolds number using traditional lattice Boltzmann method. The results of simulation were verified by comparing with available experiment data and literatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

705-711

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ye Li, Jonathan Colby, Neil Kelley, Robert Thresher, Bonnie Jonkman, and Scott Hughes. Inflow Measurement in a Tidal Strait for Deploying Tidal Current Turbines – Lessons, Opportunities and Challenges. 29th International Conference on Ocean, Offshore and Arctic Engineering. June 6-11, (2010).

DOI: 10.1115/omae2010-20911

Google Scholar

[2] He X, Luo L, Dembo M. Some progress in the lattice Boltzmann method, Part Ⅱ: Reynolds number enhancement in simulations. Physica A. 1997, 239: 276-285P.

DOI: 10.1016/s0378-4371(96)00486-4

Google Scholar

[3] Tosi F, Ubertini S, Succi S, et al. Numerical Stability of Entropic Versis Positivity-Enforcing Lattice Boltzmann Schemes. Mathematics and Computers in Simulations, 2006, 72: 227-231.

DOI: 10.1016/j.matcom.2006.05.007

Google Scholar

[4] Imamura T, Suzuki K, Nakamura T, et al. Flow simulation around an airfoil using lattice Boltzmann method on generalized coordinates [R]. AIAA-2004-244, (2004).

DOI: 10.2514/6.2004-244

Google Scholar

[5] Fillipova O, Succi S, Mazzocco F, et al. Multiscale lattice Boltzmann schemes with turbulence modeling [J]. Journal of Computational Physics, 2001, 170 (2): 812-829.

DOI: 10.1006/jcph.2001.6764

Google Scholar

[6] Lin C L, Lai Y G. Lattice Boltzmann method on composite grids [J]. Physical Review E, 2000, 62 (2): 2219-2225.

DOI: 10.1103/physreve.62.2219

Google Scholar

[7] Xu Hui, Tao Wenquan. Simulations of high Reynolds number fluid flow based on entropic Boltzmann method. Journal of engineering thermophysics. 2009, 30(1).

Google Scholar

[8] L. Szalmas. Entropic lattice Boltzmann method beyond Navier-Stokes. Physica A 380 (2007) 36-42.

DOI: 10.1016/j.physa.2007.03.002

Google Scholar

[9] Brownlee R A, Gorban A N, Levesley J. Stabilization of the Lattice Boltzmann Method Using the Ehrenfests'Coarse-Graining Idea. Phys. Rev. E, 2006, 74: 037703.

DOI: 10.1103/physreve.74.037703

Google Scholar

[10] Brownlee R A, Gorban A N, Levesley J. Stability and Stabilization of the Lattice Boltzmann Method. Phys. Rev. E, 2007, 75: 036711.

DOI: 10.1103/physreve.75.036711

Google Scholar

[11] M. Fernandino, K. Beronov and T. Ytrehus. Large eddy simulation of turbulent open duct flow using a lattice Boltzmann approach. Mathematics and Computers in Simulation 79 (2009) 1520-1526.

DOI: 10.1016/j.matcom.2008.07.001

Google Scholar

[12] Hongjuan Liu, Chun Zou, Baochang Shi, Zhiwei Tian, Liqi Zhang and Chuguang Zheng. Thermal lattice-BGK model based on large-eddy simulation of turbulent natural convection due to internal heat generation. International Journal of Heat and Mass Transfer 49 (2006).

DOI: 10.1016/j.ijheatmasstransfer.2006.03.038

Google Scholar

[13] Zhuo Congshan, Zhong Chengwen, Li Kai, Xie Jianfei and Zhang Yong. Simulation of High Reynolds Number Flow Around Airfoil by Lattice Boltzmann Method. ACTA AERONAUTICA ET ASTRONAUTICA SINICA. 2010, 31(2).

Google Scholar

[14] Rui Du, Baochang Shi and Xingwang Chen. Multi-relaxation-time lattice Boltzmann model for incompressible flow. Physics Letters A 359 (2006) 564-572.

DOI: 10.1016/j.physleta.2006.07.074

Google Scholar

[15] Huidan Yu, Li-Shi Luo, Sharath S. and Girimaji. LES of turbulent square jet flow using an MRT lattice Boltzmann model. Computers and Fluids 35 (2006) 957-965.

DOI: 10.1016/j.compfluid.2005.04.009

Google Scholar

[16] Qian Y H, d'Humieres D, Lallemand P. Lattice BGK model for Navier-Stokes equation. Europhysics Letters, 1992, 17(6): 479-484.

DOI: 10.1209/0295-5075/17/6/001

Google Scholar

[17] SMAGOTINSKY J. Genaral circulation experiments with primitive equations. Mon Weather Rev. 1963, 91: 99-165P.

Google Scholar

[18] Rongqin Qiang, Xiongliang Yao. Research on Lattice Boltzmann Method with High Renolds Number. 2008, 56-58.

Google Scholar

[19] Taro IMAMURA, Kojiro SUZUKI, Takashi NAKAMURA and Masahiro YOSHIDA. FLOW SIMULATION AROUND AN AIRFOIL USING LATTICE BOLTZMANN METHOD ON GENERALIZED COORDINATES. 42nd AIAA Aerospace Sciences Meeting and Exhibit. (2004).

DOI: 10.2514/6.2004-244

Google Scholar