The Target Tracking Algorithm Based on Local Binary Pattern Texture Model

Article Preview

Abstract:

In the target tracking algorithm, the target representation has an important impact on the target tracking performance. The previous target tracking algorithm using color model to represent the target, it can not achieve effective tracking when the target and background are in similar colors. Therefore, an improved target tracking algorithm, embedded the local binary pattern (LBP) texture model successfully, is used for target tracking algorithm. Analysis shows that in complex conditions, texture and color model based target representation have significantly improved tracking performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

558-563

Citation:

Online since:

September 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.

DOI: 10.1109/tpami.2003.1195991

Google Scholar

[2] Comaniciu D, Meer P. Mean Shift: a robust approach toward feature space analysis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24: 603-609.

DOI: 10.1109/34.1000236

Google Scholar

[3] Bradski Gray R. Computer vision face tracking as a component of a perceptual use rinterface[C]/Proc of the 4th Workshop on Application of Computer Vision, 1998: 214-219.

Google Scholar

[4] Ojala T, Valkealahti K, Oja E. et al. Texture discrimination with m- ultidimensional distributions of signed gray level differences[J]. Pattern Recognition, 2001, 34(3): 727-739.

DOI: 10.1016/s0031-3203(00)00010-8

Google Scholar

[5] Ojala T. Pietikainen M. Maenpaa T. Multiresolution gray scale and rotation invariant texture classification with local binary pattern[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.

DOI: 10.1109/tpami.2002.1017623

Google Scholar

[6] Charay L, Mohamed A, Tracking multiple people with recovery from partial and total occlusion[J]. Pattern Recognition, 2005, 38(7): 1059-1070.

DOI: 10.1016/j.patcog.2004.11.022

Google Scholar

[7] PENG Ning-Song YANG Jie LIU Zhi etc. Automatic Selection of Kernel-Bandwidth for Mean-Shift Object Tracking [J]. Journal of Software, 2005, 16(9): 1542-1550.

DOI: 10.1360/jos161542

Google Scholar

[8] BRADSKIG R. Computervision face tracking foruse in a perceptu-aluser interface[C]/Proceedings ofFourth IEEEWorkshopAppli-cations ofComputerVision. Berlin: IEEE, 1998: 214-219.

Google Scholar

[9] COLLINS R T, LIU YAN-XI. On-line selection of discriminative tracking features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.

DOI: 10.1109/tpami.2005.205

Google Scholar

[10] ALLEN JG, XU R Y D, JIN J S. Object tracking using camshift al-gorithm and multiple quantized feature space[C]/ Proceedings of 2003 Pan-Sydney AreaWorkshop on Visual Information Processing. Darlinghurst, Australia: Australian ComputerSociety, 2004: 3-7.

Google Scholar