Effect of Channel Fading on the Performance of Wireless Ad Hoc Network Routing Protocols

Article Preview

Abstract:

In this paper the application spectrum of wireless ad hoc network is a typical battle field monitoring system for the public safety purpose and military sector where the sensor network simulator architecture is used to provide support for sensing capabilities in network nodes for different mobility conditions. Rayleigh and Rician fading (K=3) model is used for the effect of channel fading in the network scenario. The channel fading incurs extra network overhead in the PHY, MAC and Network layer. A comprehensive study on the performance of ad hoc network routing protocols under realistic network scenarios with the effect of channel fading models is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-648

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. S. Rappport, Wireless communications, principles and practice, 2nd ed. Prentice Hall, (2000).

Google Scholar

[2] Mullen J, Haung H., Impact of multipath fading in wireless ad hoc networks. In: Proceedings of the second ACM workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN. 05); (2005).

DOI: 10.1145/1089803.1089984

Google Scholar

[3] Toh, C. K. and Royer, E. M., A review of current routing protocols for ad hoc mobile wireless network, IEEE Personal Communications 15, 5 Apr, 1999, pp.46-55.

DOI: 10.1109/98.760423

Google Scholar

[4] C. Siva Rama Murthy and B. S. Manoj, Ad hoc Wireless Networks: Architecture and protocols, Second edition, Prentice Hall, (2004).

Google Scholar

[5] Clausen, T., Dearlove, C., Jacquet, P., The optimized link state routing protocol version 2, draft-ietf-manet-olsrv2-06, (2008).

DOI: 10.17487/rfc7188

Google Scholar

[6] Tsuchiya, P. F., The Landmark Hierarchy: a new hierarchy for routing in very large networks, In Computer Communication Review, vol. 18, no. 4, Aug. 1988, pp.35-42.

DOI: 10.1145/52325.52329

Google Scholar

[7] Perkins, C. E., Royer, E. M. and Das, S. R., Ad hoc on-demand distance vector (AODV) routing, Internet Draft, IETF, RFC 3561 , (2003).

DOI: 10.17487/rfc3561

Google Scholar

[8] Motorola, C. I., Perkins, C., Dynamic MANET On- Demand (DYMO) Routing, draft-ietf-manet-dymo-12, (2008).

Google Scholar

[9] Akyildiz, . F .I., Su, W., Sankarasubramaniam, Y . and Cayirci,E. 2002, A survey on sensor networks, " IEEE Communications magazine, vol. 40, No. 8 (Nov. 2002), pp.102-114. DOI=10. 1145/501417. 501420.

DOI: 10.1109/mcom.2002.1024422

Google Scholar

[10] Varshney, M., Bagrodia, R., Detailed models for sensor network simulations and their impact on network performance, MSWim'04, ACM, (2004).

DOI: 10.1145/1023663.1023678

Google Scholar

[11] Heinzeelman, W. B., Chandra Kasan, A., Bala Krishnan, H., Energy-Efficient communication protocol for wireless microsensor networks, In the Proceeding. of the 33rd Annual Hawaii Int'l Conf. on System Sciences. Maui: IEEE Computer Society, 2000, 3005-3014.

DOI: 10.1109/hicss.2000.926982

Google Scholar

[12] Santivanez, A. C., McDonald, B., Stavrakakis, I., Ramanathan, R., , Making link state routing scale for ad hoc networks Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, (2001).

DOI: 10.1145/501416.501420

Google Scholar

[13] Jiang, S., He, D. and Rao, J., A prediction-based link availability estimation for routing metrics in MANETs, IEEE/ACM Transactions on Networking, vol. 13, No. 6, 2005, p.1302–1312.

DOI: 10.1109/tnet.2005.860094

Google Scholar

[14] IEEE, Wireless LAN medium access control (MAC) and physical layer (PHY) specification. IEEE Std. 802. 11, June (1999).

DOI: 10.1109/ieeestd.1997.85951

Google Scholar

[15] Zhou, Z., Xiang, X., Wang, X., A holistic sensor network design for energy conservation and efficient data dissemination, Jianping Pan, 2011 Computer Networks xxx (2010), www. elsevier. com/ locate/comnet.

DOI: 10.1016/j.comnet.2010.08.002

Google Scholar

[16] Linden, D. and Reddy, T. Handbook of Batteries. 3rd edition Newyork: McGrawHill, (2001).

Google Scholar

[17] Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M. and Scarsi, R., Discrete time battery model for high level power estimation. Proc. design automation & test Europe (DATE) Conf. March 2000, 35-39.

DOI: 10.1145/343647.343694

Google Scholar

[18] Qualnethttp: /www. scalablenetworks. com.

Google Scholar

[19] Tripathi, K., Pandey, M., Verma, S. Comparison of Reactive and Proactive Routing Protocols for Different Mobility Conditions in WSN, ACM 978-1-4503-0464-1/11/02, ICCCS'11, February, 2011 pp.156-161.

DOI: 10.1145/1947940.1947974

Google Scholar