Design of a WiMedia/MBOA 0.13μm CMOS Front-End

Article Preview

Abstract:

This paper addresses the design of a 3.0-8.0GHz direct-conversion receiver front-end chip for ultra-wideband (UWB) WiMedia/MBOA data communication. It comprises a partial noise cancellation broadband low-noise amplifier (LNA) and a linearity enhancement quadrature mixer. The simulation results show that the chip performance achieved the input reflection coefficient better than -11dB along the entire band and a minimum single sideband noise figure (SSB NF) of 6.57dB at IF frequency of baseband. The conversion gain ranges from 24.9dB to 29.5dB while the input third order interception point (IIP3) ranges from 1.5dBm to 8.7dBm. The chip core merely consumes 20mW from 1.2V supply.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1306-1312

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Chen-Ming Li, Ming-Tsung Li: A Low-Power Self-Forward-Body-Bias CMOS LNA for 3–6. 5-GHz UWB Receivers, IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, p.100–102, (2010).

DOI: 10.1109/lmwc.2009.2038526

Google Scholar

[2] Y. -J. Lin, S. -H. Hsu, J. -D. Jin, and C. -Y. Chan: A 3. 1 10. 6-GHz ultrawideband CMOS LNA with current-reused technique, IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, p.232–234, (2007).

DOI: 10.1109/lmwc.2006.890503

Google Scholar

[3] A. Bevilacqua and A. M. Niknejad: An ultra-wideband CMOS lownoise amplifier for 3. 1–10. 6-GHz wireless receivers, IEEE J. Solid- State Circuits, vol. 39, no. 12, p.2259–2268, (2004).

DOI: 10.1109/jssc.2004.836338

Google Scholar

[4] C. -W. Kim, M. -S. Kang, P. -T. Anh, H. -T. Kim, and S. -G. Lee: An ultra-wideband CMOS LNA for 3–5-GHz UWB system, IEEE J. Solid-State Circuits, vol. 40, no. 2, p.544–547, February (2005).

DOI: 10.1109/jssc.2004.840951

Google Scholar

[5] Wang Chu hua: A CMOS 3. 1-10. 6 GHz Merged UWB LNA and Mixer, 4th WiCOM, pp.1-4, (2008).

Google Scholar

[6] Ahmed Amer , Emad Hegazi, and Hani F. Ragaie: A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation, IEEE J. Solid-State Circuits, VOL. 42, NO. 2, pp.323-328, (2007).

DOI: 10.1109/jssc.2006.889374

Google Scholar

[7] Wei-Hung Chen, Gang Liu: A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation, IEEE J. Solid-State Circuits, VOL. 43, NO. 5, p.365–368, (2008).

DOI: 10.1109/jssc.2008.920335

Google Scholar

[8] MacEachern, L. A., & Manku, T. : A charge-injection method for Gilbert-cell biasing, IEEE Canadian Conference on Electrical and Computer Engineering, 1, p.365–368, (1998).

DOI: 10.1109/ccece.1998.682760

Google Scholar

[9] SOORAPANTH, T., and LEE, T.H. : RF linearity of short-channel MOSFETs. 1st international workshop on Design of mixed-mode integrated circuits and applications, Mexico, pp.81-84, (1997).

Google Scholar

[10] Ting-Ping Liu, and Eric Westerwick: 5-GHz CMOS Radio Transceiver Front-End Chipset, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 12, pp.1927-1933, (2000).

DOI: 10.1109/4.890306

Google Scholar

[11] Jussi Ryynänen, Kalle Kivekäs, and Jarkko Jussila,: A Dual-Band RF Front-End for WCDMA and GSM Applications, IEEE J. Solid-State Circuits, Vol. 36, No. 8, pp.1198-1204, (2001).

DOI: 10.1109/4.938370

Google Scholar

[12] Vojkan Vidojkovic. Johan van der Tang, Arjan Leeuwenburgh and Arthur van Roermund: MIXER TOPOLOGY SELECTION FOR A 1. 8 - 2. 5 GHZ MULTI-STANDARD FRONT-END IN 0. 18 μm CMOS, IEEE International Symposium on Circuits and Systems, v 2, pp.300-303, (2003).

DOI: 10.1109/iscas.2003.1205966

Google Scholar

[13] T. Hui Teo, Wooi Gan Yeoh: Low-Power Short-Range Radio CMOS Subharmonic RF Front- End Using CG-CS LNA, IEEE Trans. On Circuits and Systems II, Vol. 55, No. 7, pp.658-662, (2008).

DOI: 10.1109/tcsii.2008.921578

Google Scholar