[1]
T. Aulin, C. -E.W. Sundberg: Continuous Phase Modulation – Part I: Full response signalling, IEEE Trans. Comm., vol. COM-29 (1981) pp.196-209.
DOI: 10.1109/tcom.1981.1095001
Google Scholar
[2]
T. Aulin, N. Rydbeck and C. -E.W. Sundberg: Continuous Phase Modulation – Part II: Partial response signalling, IEEE Trans. Comm., vol. COM-29 (1981) pp.210-225.
DOI: 10.1109/tcom.1981.1094985
Google Scholar
[3]
J.B. Anderson, T. Aulin and C.E. Sundberg: Digital Phase Modulation (Plenum, New York 1986).
Google Scholar
[4]
B. E. Rimoldi: A Decomposition Approach to CPM, IEEE Trans. Inf. Theory, vol. 34 (1988) p.260–270.
Google Scholar
[5]
S.V. Pizzi and S.G. Wilson: Convolutional Coding Combined with Continuous Phase Modulation, IEEE Trans. Comm., vol. COM-33 (1985) pp.20-29.
DOI: 10.1109/tcom.1985.1096194
Google Scholar
[6]
G. Lindell: On Coded Continuous Phase Modulation, (Ph.D., Univ. of Lund, Sweden, 1985).
Google Scholar
[7]
P. Ho and P.J. McLane: Spectrum, Distance and Receiver Complexity of Encoded Continuous Phase Modulation, Proc. Global Telecomm. (Atlanta, GA, USA, Nov. 1984). p.32. 3. 1-32. 3. 6.
Google Scholar
[8]
F. Morales-Moreno, W. Holubowicz, and S. Pasupathy: Optimization of Trellis Coded TFM via Matched Codes, IEEE Trans. Comm., vol. COM-42 (1994) pp.1586-1594.
DOI: 10.1109/tcomm.1994.582851
Google Scholar
[9]
B. E. Rimoldi: Continuous Phase Modulation and Coding from Bandwidth and Energy Efficiency (PhD dissertation, Swiss Fed. Inst. Technol., 1988).
Google Scholar
[10]
C. Berrou, A. Glavieux, P. Thitimajshima: Near Shannon Limit Error-correcting Coding and Decoding: Turbo Codes, (ICC 1993, Geneva, Switzerland, 1993). pp.1064-1070.
DOI: 10.1109/icc.1993.397441
Google Scholar
[11]
S. Benedetto and G. Montorsi: Iterative Decoding of Serially Concatenated Convolutional Codes, IEEE Electronics Letters, vol. 32 (1996) No. 13, pp.1186-1188.
DOI: 10.1049/el:19960793
Google Scholar
[12]
P. Moqvist and T. M. Aulin: Serially Concatenated Continuous Phase Modulation with Iterative Decoding, IEEE Trans. Comm., vol. 49 (2001) p.1901–(1915).
DOI: 10.1109/26.966054
Google Scholar
[13]
A. J. Viterbi, J. K. Wolf, E. Zehavi, and R. Padovani: A Pragmatic Approach to Trellis-coded Modulation, IEEE Communications Magazine, vol. 27 (1989) No. 7, p.11–19.
DOI: 10.1109/35.31452
Google Scholar
[14]
G. Caire, G. Taricco, and E. Biglieri: Bit-interleaved Coded Modulation, IEEE Trans. Inf. Theory, vol. 44 (1998) p.927–946.
DOI: 10.1109/18.669123
Google Scholar
[15]
A. Perotti, A. Tsrable, A. Benedetto and G. Montorsi: Capacity-Achieving CPM Schemes, " IEEE Trans. Inf. Theory, vol. 56 (2010) No. 4, p.1521–1541.
DOI: 10.1109/tit.2010.2040861
Google Scholar
[16]
R.H. -H. Yang and D.P. Taylor: Trellis-coded Continuous-phase Frequency-shift Keying with Ring Convolutional Codes, IEEE Trans. Inf. Theory, vol. IT-40 (1994) pp.1057-1067.
DOI: 10.1109/18.335968
Google Scholar
[17]
B. Rimoldi and Q. Li: Coded Continuous Phase Modulation Using Ring Convolutional Codes, IEEE Trans. Comm., vol. COM-43 (1995) pp.2714-2720.
DOI: 10.1109/26.481222
Google Scholar
[18]
M. Xiao and T. M. Aulin: Serially Concatenated Continuous Phase Modulation with Convolutional Codes Over Rings, IEEE Trans. Comm., vol. 54 (2006) No. 8.
DOI: 10.1109/tcomm.2006.878826
Google Scholar
[19]
M. Singh and I.J. Wassell: SOVA Decoding of Concatenated Convolutional Encoders and CPM Scheme Over AWGN and Fading Channels, 2000 IEEE International Conference on Personal Wireless Communication (Dec. 2000). pp.152-156.
DOI: 10.1109/icpwc.2000.905792
Google Scholar