Image Thresholding Using Parzen Window Estimation and Tsallis Entropy

Article Preview

Abstract:

Image segmentation is an important problem of digital image processing and also a common difficult problem. In this paper, a new image thresholding method based on parzen-window estimation and Tsallis entropy is proposed. The method used Parzen-window technology to estimate the spatial probability distribution of image gray level values,then combined with the Tsallis entropy to construct a new criterion function, and at last searched the optimal global threshold in the scope of gray level to maximum the criterion function. This new method has some advantages, such as high accuracy to image segmentation, fine stability comparing with the traditional Tsallis entropy method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-283

Citation:

Online since:

September 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Pun T. Entropic thresholding, a new method[J]. Computer Graphics and Image Process, 1981, 16(3): 210~239.

DOI: 10.1016/0146-664x(81)90038-1

Google Scholar

[2] Pun T. A new method for grey-level picture thresholding using the entropy of the histogram [J]. Signal Process, 1980, 2(3): 223~237.

DOI: 10.1016/0165-1684(80)90020-1

Google Scholar

[3] Kapur J N, Sahoo PK, Wong A K C. A new method for gray level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics and Image Process, 1985, 29(3): 273~285.

DOI: 10.1016/0734-189x(85)90125-2

Google Scholar

[4] Yen J G, Chang F J , Chang S. A new criterion for automatic multilevel thresholding [J]. IEEE Trans. Image Processing, 1995, 4(3): 233~260.

DOI: 10.1109/83.366472

Google Scholar

[5] Sahoo P K, Wilkins C, Yeager J. Threshold selection using Renyi's entropy[J]. Pattern Recognition, 1997, 30(1): 71~84.

DOI: 10.1016/s0031-3203(96)00065-9

Google Scholar

[6] Li C H, Lee C K. Minimum cross-entropy thresholding[J]. Pattern Recogn. 1993(26): 617~ 625.

DOI: 10.1016/0031-3203(93)90115-d

Google Scholar

[7] Li C H, Tam P K S. An iterative algorithm for minimum cross-entropy thresholding[J]. Pattern Recogn. Lett. 1998(19): 771~776.

DOI: 10.1016/s0167-8655(98)00057-9

Google Scholar

[8] Brink A D, Pendock N E. Minimum cross entropy threshold selection[J]. Pattern Recogn. 1996(29): 179~188.

DOI: 10.1016/0031-3203(95)00066-6

Google Scholar

[9] Pal N R. On minimum cross-entropy thresholding[J]. Pattern Recogn. 1996, 29(4): 575~580.

DOI: 10.1016/0031-3203(95)00111-5

Google Scholar

[10] Shanbag A G. Utilization of information measure as a means of image thresholding[J]. Comput. Vis. Graph. Image Process. 1994, 56, 414~419.

Google Scholar

[11] Cheng H D, Chen Y H, Sun Y. A novel fuzzy entropy approach to image enhancement and thresholding[J]. Signal Process. 1999(75), 277~301.

DOI: 10.1016/s0165-1684(98)00239-4

Google Scholar

[12] De Albuquerque M P, Esquef I A, Gesualdi Mello A R. Image thresholding using Tsallis entropy [J]. Pattern Recognition Letters, 2004, 25(9): 1059~ 1065.

DOI: 10.1016/j.patrec.2004.03.003

Google Scholar

[13] Abutaleb A S. Automatic thresholding of gray-level pictures using two- dimensional entropies[J]. Pattern Recognition, 1989, 47(1): 22~32.

DOI: 10.1016/0734-189x(89)90051-0

Google Scholar

[14] Wang S. T, Chung F. L, Xiong F.S. A novel image thresholding method based on Parzen windowestimate. [J]. Pattern Recognition, 2008, 41: 117-129.

DOI: 10.1016/j.patcog.2007.03.029

Google Scholar

[15] Wang J, Wang S.T. Image Thresholding Using Weighted Parzen-Window Estimation[J], Journal of Applied Sciences, 2008, 8(5)772-779.

DOI: 10.3923/jas.2008.772.779

Google Scholar

[16] Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging, 2004, 13 (1): 146~165.

DOI: 10.1117/1.1631315

Google Scholar

[17] W.A. Yasnoff, J.K. Mui, J.W. Bacus, Error measures for scence segmentation, Pattern Recognition[J] . 1997(9): 217-231.

DOI: 10.1016/0031-3203(77)90006-1

Google Scholar

[18] Y.J. Zhang, A survey on evaluation methods for image segmentation [J]. Pattern Recognition 1996 (29): 1335-1346.

DOI: 10.1016/0031-3203(95)00169-7

Google Scholar