[1]
F. Odlie, H. Li, R.H. Schelp, Strong edge coloring of graphs, Dis. Math., 159(1996), 103-109.
Google Scholar
[2]
A.C. Burris etc., Vertex-distinguish proper edge-colorings, J. of Graph Theory, 26(1997), 73-82.
DOI: 10.1002/(sici)1097-0118(199710)26:2<73::aid-jgt2>3.0.co;2-c
Google Scholar
[3]
P. N. Balister, O. M. Riordan, R. H. Schelp, Vertex-distinguishing Edge Colorings of Graphs, J. Graph Theory, 42(2003), 95-109.
DOI: 10.1002/jgt.10076
Google Scholar
[4]
Z.F. Zhang, L.Z. Liu, J.F. Wang, Adjacent strong edge coloring of graphs, Appli. Math. Lett. 15(2002) 623-626.
DOI: 10.1016/s0893-9659(02)80015-5
Google Scholar
[5]
P.N. Balister,E. Györi,J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge colorings. SIAM,J. on Discrete Math., Vol. 1(2006)237-250.
DOI: 10.1137/s0895480102414107
Google Scholar
[6]
S. Akbari,H. bidkhhori and N. Nosrati, r strong edge colrings of graphs, Discrete Mathetics, Vol. 306, No. 23(2006), 3005-3010.
DOI: 10.1016/j.disc.2004.12.027
Google Scholar
[7]
Jingwen Li, Zhongfu Zhang, Xiangen Chen, A Note on Adjacent strong edge eoloring of K(n, m), Acta Mathematicae.
Google Scholar
[3]
Applicatae Sinica, English Series. Vol. 22, No. 2 (2006) 283~286.
Google Scholar
[8]
Li JingWen and Zheng LiYing, On The Edge Chromatic Number of K(n, m), JOURNAL OF LANZHOU RAILWAY UNIVERSITY (NaturalSciences), Vol. 21, No. 6, Dec. (2002).
Google Scholar
[9]
Behzad, M. Graphs and their chromatic numbers. Doctoral Thesis, Michigan State University, East Lansing, (1965).
Google Scholar
[10]
Bondy, J.A., Mutry, U.S.R. Graph theory with applications. Macmillan. Elsevier, London, New York, (1976).
Google Scholar
[11]
Chen, X.E., Zhang, Z.F. AVDTC number of generalized Halin graphs with maximum degree at least 6. Acte Mathematicae Application Sinica, 24(1): 55–58 (2008).
DOI: 10.1007/s10255-005-5222-8
Google Scholar
[12]
Fu, H.L. Some results on equalized total coloring. Congressus Numerantium, 102: 111–119 (1994).
Google Scholar
[13]
Vizing, V.G. On an estimate of chromatic class of a p−graph (Russian). Metody Diskret. Analiz., 3: 25–30 (1964).
Google Scholar
[14]
Zhang, Z.F., Wang, W.F., Bao, S., Li, J.W., Wang, Z.W., Wang, W.J. On the equitable total colorings of some join graphs. Journal of Information and Computational Science, 2(4): 829–834 (2005).
Google Scholar
[15]
Zhang, Z.F., Zhang, J. X, Wang, J.F. The total chromatic number of some graph. Sciences Sinica (Series A), 31(12): 1434–1441 (1988).
Google Scholar