On the Equitable Adjacent Strong Edge Coloring of K(n,m)

Article Preview

Abstract:

For a graph G(V,E),then is called k-adjacent strong edge coloring of G, is abbreviated k-ASEC, if a k-ASEC of G satisfies then f is called k-equitable adjacent strong edge coloring of G, is called k-EASC for short, and is called the equitable adjacent strong edge chromatic number of G. In this paper, we have proved the equitable adjacent strong edge chromatic number of graph K(n,m) , with n≥ 2,n≡0(mod 2), m≥ 1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-406

Citation:

Online since:

September 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Odlie, H. Li, R.H. Schelp, Strong edge coloring of graphs, Dis. Math., 159(1996), 103-109.

Google Scholar

[2] A.C. Burris etc., Vertex-distinguish proper edge-colorings, J. of Graph Theory, 26(1997), 73-82.

DOI: 10.1002/(sici)1097-0118(199710)26:2<73::aid-jgt2>3.0.co;2-c

Google Scholar

[3] P. N. Balister, O. M. Riordan, R. H. Schelp, Vertex-distinguishing Edge Colorings of Graphs, J. Graph Theory, 42(2003), 95-109.

DOI: 10.1002/jgt.10076

Google Scholar

[4] Z.F. Zhang, L.Z. Liu, J.F. Wang, Adjacent strong edge coloring of graphs, Appli. Math. Lett. 15(2002) 623-626.

DOI: 10.1016/s0893-9659(02)80015-5

Google Scholar

[5] P.N. Balister,E. Györi,J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge colorings. SIAM,J. on Discrete Math., Vol. 1(2006)237-250.

DOI: 10.1137/s0895480102414107

Google Scholar

[6] S. Akbari,H. bidkhhori and N. Nosrati, r strong edge colrings of graphs, Discrete Mathetics, Vol. 306, No. 23(2006), 3005-3010.

DOI: 10.1016/j.disc.2004.12.027

Google Scholar

[7] Jingwen Li, Zhongfu Zhang, Xiangen Chen, A Note on Adjacent strong edge eoloring of K(n, m), Acta Mathematicae.

Google Scholar

[3] Applicatae Sinica, English Series. Vol. 22, No. 2 (2006) 283~286.

Google Scholar

[8] Li JingWen and Zheng LiYing, On The Edge Chromatic Number of K(n, m), JOURNAL OF LANZHOU RAILWAY UNIVERSITY (NaturalSciences), Vol. 21, No. 6, Dec. (2002).

Google Scholar

[9] Behzad, M. Graphs and their chromatic numbers. Doctoral Thesis, Michigan State University, East Lansing, (1965).

Google Scholar

[10] Bondy, J.A., Mutry, U.S.R. Graph theory with applications. Macmillan. Elsevier, London, New York, (1976).

Google Scholar

[11] Chen, X.E., Zhang, Z.F. AVDTC number of generalized Halin graphs with maximum degree at least 6. Acte Mathematicae Application Sinica, 24(1): 55–58 (2008).

DOI: 10.1007/s10255-005-5222-8

Google Scholar

[12] Fu, H.L. Some results on equalized total coloring. Congressus Numerantium, 102: 111–119 (1994).

Google Scholar

[13] Vizing, V.G. On an estimate of chromatic class of a p−graph (Russian). Metody Diskret. Analiz., 3: 25–30 (1964).

Google Scholar

[14] Zhang, Z.F., Wang, W.F., Bao, S., Li, J.W., Wang, Z.W., Wang, W.J. On the equitable total colorings of some join graphs. Journal of Information and Computational Science, 2(4): 829–834 (2005).

Google Scholar

[15] Zhang, Z.F., Zhang, J. X, Wang, J.F. The total chromatic number of some graph. Sciences Sinica (Series A), 31(12): 1434–1441 (1988).

Google Scholar