[1]
A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD '00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, pages 13-23, London, UK, 2000. SpringerVerlag.
DOI: 10.1007/3-540-45372-5_2
Google Scholar
[2]
M. J. Zaki. Efficiently mining frequent trees in a forest. In KDD '02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 71-80, Edmonton, Alberta, Canada, 2002. ACM.
DOI: 10.1145/775047.775058
Google Scholar
[3]
M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM '01: Proceedings of the 2001 IEEE International Conference on Data Mining, pages 313-320, Washington, DC, USA, 2001. IEEE Computer Society.
DOI: 10.1109/icdm.2001.989534
Google Scholar
[4]
Pahl, C., & Donnellan, C. (2003). Data mining technology for the evaluation of web-based teaching and learning systems. In Proceedings of the Congress E-learning. Montreal, Canada , p.17.
Google Scholar
[5]
Koutri, M., Avouris, N., & Daskalaki, S. (2005). A survey on web usage mining techniques for web-based adaptive hypermedia systems. Adaptable and adaptive hypermedia systems. IRM Press , pp.125-149.
DOI: 10.4018/978-1-59140-567-2.ch007
Google Scholar
[6]
Mostow, J., & Beck, J. (2006). Some useful tactics to modify, map and mine data from intelligent tutors. Natural Language Engineering, 12(2), 195-208.
DOI: 10.1017/s1351324906004153
Google Scholar
[7]
C. Romero, S. Ventura, E. Garcı´a. Data mining in course management systems: Moodle case study and tutorial. Computers & Education 51 (2008) 368-384.
DOI: 10.1016/j.compedu.2007.05.016
Google Scholar
[8]
Liu Bo. Non-linear Correlation Discovery-based Technique in Data Mining. Proceedings on Intelligent Information Technology Application, IITA2008, Shang Hai, China, pp.117-121.
DOI: 10.1109/iita.workshops.2008.30
Google Scholar
[9]
Apostolos N.P., Apostolos L., Yannis M. (2009), SkyGraph: an anlgorithm for important subgraph discovery in relational graphs, Data Mining and Knowledge Discovery, 17: 57-76.
DOI: 10.1007/s10618-008-0109-y
Google Scholar