A Kernel Density Estimation Based Interestingness Measure for Association Rule Mining

Abstract:

Article Preview

Association rules provide a concise statement of potentially useful information, and have been widely used in real applications. However, the usefulness of association rules highly depends on the interestingness measure which is used to select interesting rules from millions of candidates. In this study, a probability analysis of association rules is conducted, and a discrete kernel density estimation based interestingness measure is proposed accordingly. The new proposed interestingness measure makes the most of the information contained in the data set and obtains much lower falsely discovery rate than the existing interestingness measures. Experimental results show the effectiveness of the proposed interestingness measure.

Info:

Periodical:

Edited by:

Qi Luo

Pages:

389-394

DOI:

10.4028/www.scientific.net/AMM.20-23.389

Citation:

Z. F. Hao et al., "A Kernel Density Estimation Based Interestingness Measure for Association Rule Mining", Applied Mechanics and Materials, Vols. 20-23, pp. 389-394, 2010

Online since:

January 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.