[1]
B. Liu, W. Hsu, and Y. Ma, Integrating Classification and Association Rule Mining, Proceeding of KDD Conference(1998), pp.80-86.
Google Scholar
[2]
Cheng, H., Yan, X., Han, J. & Yu, P.S. Direct Discriminative Pattern Mining for Effective Classification. Proceeding of ICDE Conference (2008), pp.169-178.
Google Scholar
[3]
G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang, FARMER: Finding Interesting Rule Groups in Microarray Datasets, Proceeding of SIGMOD Conference(2004), pp.143-154.
DOI: 10.1145/1007568.1007587
Google Scholar
[4]
G. Cong, K. Tan, A.K.H. Tung, and X. Xu, Mining Top-k Covering Rule Groups for Gene Expression Data, Proceeding of SIGMOD Conference(2005) pp.670-681.
DOI: 10.1145/1066157.1066234
Google Scholar
[5]
J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann(2000).
Google Scholar
[6]
Brin, S., Motwani, R., Ullman, J.D. & Tsur, S. Dynamic Itemset Counting and Implication Rules for Market Basket Data. Proceeding of SIGMOD Conference(1997), pp.255-264.
DOI: 10.1145/253262.253325
Google Scholar
[7]
Webb, G.I. Discovering significant rules. Machine Learning (2006), pp.434-443.
Google Scholar
[8]
J. Li, H. Li, L. Wong, J. Pei, and G. Dong, Minimum Description Length Principle: Generators Are Preferable to Closed Patterns, Proceeding of AAAI Conference, (2006).
Google Scholar
[9]
J. AITCHISON and C.G.G. AITKEN, Multivariate binary discrimination by the kernel method, Biometrika, vol. 63(1976), pp.413-420.
DOI: 10.1093/biomet/63.3.413
Google Scholar
[10]
P. HALL, On nonparametric multivariate binary discrimination, Biometrika, vol. 68(1981), pp.287-294.
DOI: 10.1093/biomet/68.1.287
Google Scholar
[11]
G. TUTZ, An alternative choice of smoothing for kernel-based density estimates in discrete discriminant analysis, Biometrika, vol. 73(1986), pp.405-411.
DOI: 10.1093/biomet/73.2.405
Google Scholar
[12]
C.F. Aliferis, I. Tsamardinos, A.R. Statnikov, and L.E. Brown, Causal Explorer: A Probabilistic Network Learning Toolkit for Biomedical Discovery, (2004).
Google Scholar
[13]
A.C. Tan, D.Q. Naiman, L. Xu, R.L. Winslow, and D. Geman, Simple decision rules for classifying human cancers from gene expression profiles, Bioinformatics, vol. 21(2005), pp.3896-3904.
DOI: 10.1093/bioinformatics/bti631
Google Scholar
[14]
R. Kohavi, A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, Proceeding of IJCAI Conference(1995) pp.1145-1137.
Google Scholar