[1]
G.G. He, Y. Li and S.F. Ma: Discussion on Short-Term Traffic Flow Forecasting Methods Based on Mathematical Models. System Engineering Theory Practice, Volume. 12(2000), pp.51-56.
Google Scholar
[2]
C. Han and S. Song: A review of some main models for traffic flow forecasting. IEEE Intelligent Transportation Systems Proceedings, Volume. 1 (2003), pp.216-219.
DOI: 10.1109/itsc.2003.1251951
Google Scholar
[3]
V. N. Vapnik: The Nature of Statistical Learning Theory. New York, Springer (1995).
Google Scholar
[4]
F. Wang, G. Z. Tan, C. Deng, and Z. Tian: Real-time Traffic Flow Forecasting Model and Parameter Selection based on ε-SVR. The 7th World Congress on Intelligent Control and Automation (wcica'08), China, (2008), pp.2870-2875.
DOI: 10.1109/wcica.2008.4593381
Google Scholar
[5]
C.H. Wu, J.M. Ho, and D.T. Lee: Travel-time prediction with support vector regression. IEEE Transactions on Intelligent Transportation Systems, Vol. 5(4)(2004), pp.276-281.
DOI: 10.1109/tits.2004.837813
Google Scholar
[6]
Y. Lu and V. Roychowdhury: Parallel Randomized Support Vector Machine. In Proc. PAKDD, pp.205-214, (2006).
Google Scholar
[7]
Q.S. Yang and C.G. Guo: A Parallel Implementation of Error Correction SVM with Applications to Face Recognition. Lecture Notes in Computer Science, 5552(2009): 327-336.
DOI: 10.1007/978-3-642-01510-6_38
Google Scholar
[8]
H.P. Graf, E. Cosatto and L. Bottou et . al: Parallel support vector machines: the cascade SVM [ C ] Advances in Neural Information Processing Systems, Cambridge, MA: M IT Press, pp.521-528 (2005).
Google Scholar
[9]
J. Yang. An imp roved cascade SVM training algorithm with crossed feedbacks[C]. IEEE Proceedings of IMSCCS'06 , Hangzhou, Vol. 2(2006), pp.735-738.
DOI: 10.1109/imsccs.2006.183
Google Scholar
[10]
L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X.J. Fu, and H. P. Lee, Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans. Neural Network, vol. 17(2006), no. 4, pp.1039-1049.
DOI: 10.1109/tnn.2006.875989
Google Scholar
[11]
J.C. Platt. Fast Training of support Vector Machines Using Sequential Minimal Optimization[M]. Cambridge, MA: MIT Press, pp.185-208(1999).
DOI: 10.7551/mitpress/1130.003.0016
Google Scholar
[12]
N.Y. Deng and Y.J. Tian: New Method of Data Mining-Support Vector Machines [M] . Beijing : Science Press , pp.224-274(2004).
Google Scholar
[13]
Freeway Performance Measurement System (PEMS), version7. 0 [Online]: http: /pems. eecs. berkeley. edu/Public.
Google Scholar