p.1042
p.1046
p.1051
p.1055
p.1061
p.1066
p.1071
p.1076
p.1080
Mechanism Research on Multi-Wedge Synchrostep Rolling Asymmetric Shaft-Parts by Cross-Wedge Rolling
Abstract:
Because most of the asymmetric shaft-parts have relatively large size in the axial direction, single-wedge cross-wedge rolling (CWR) exposes many imperfections, such as the huge roller, higher cost etc. The paper adopted finite element method (FEM) to simulate multi-wedge synchrostep CWR (MS-CWR) based on the typical asymmetric shaft-part, and gained its distribution and characteristics of stress and strain. In the knifing stage, the deformation of work piece only emerges on the local region, but in the stretching stage, most of regions are observed the deformation except two ends of the billet and the transition position between inner and outer wedge of multi-wedges. The results offer theoretical basis for promoting and applying MS-CWR technology on asymmetric shaft-parts.
Info:
Periodical:
Pages:
1061-1065
Citation:
Online since:
October 2012
Authors:
Price:
Сopyright:
© 2012 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: