Forming Limit Prediction of BCC Materials under Non-Proportional Strain-Path by Using Crystal Plasticity

Article Preview

Abstract:

In this paper, the forming limit of a body-centered cubic (BCC) sheet metal under non-proportional strain-path is investigated by using the Marciniak and Kuczynski approach integrated with a rate-dependent crystal plasticity model. The prediction model has been proved to be effective in predicting Forming Limit Diagram (FLD) of anisotropic sheet metal with FCC type of slip systems[1]. The same model has been used to study the FLD under non-proportional strain-path of BCC slip systems numerically and experimentally. The agreement between the experiments and simulations is good. With crystal plasticity model well describing the crystal microstructure effect, our model can be used to predict the FLD of BCC sheet metal under complicated strain path in plastic forming process with good accuracy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1110-1116

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M Yang, X.H. Dong, R Zhou, J. Cao: Materials Science and Engineering A, Vol.527 (2010), p.6607–6613

Google Scholar

[2] R. Hill: J. Mech. Phys. Solids, Vol. 1(1952), pp.19-30.

Google Scholar

[3] Z. Marciniak, K. Kuczynski: Int. J. Mech. Sci., Vol. 9 (1967), pp.609-620.

Google Scholar

[4] J. W. Hutchinson, K. W. Neale: Mechanics of Sheet Metal Forming (Plenum Press, New York 1978) pp.127-153.

Google Scholar

[5] D. Raabe, Y. Wang, F. Roters: Comp. Mater. Sci., Vol.34 (2005) No.3, pp.221-234.

Google Scholar

[6] I. Tikhovskiy, D. Raabe, F. Roters:J. Mat. Proc. Tech., Vol.183 (2007) ,p.169–175

Google Scholar

[7] M. Kraska, M. Doig, D. Tikhomirov, D. Raabe:Comp Mater. Sci., Vol.46 (2009) No.2, pp.383-392.

Google Scholar

[8] Y. Zhou, K. W. Neale: Int. J. Mech. Sci., Vol.37 (1995), p.1–20.

Google Scholar

[9] R. D. McGinty, D. L. McDowell: J. Eng. Mater. Technol. Vol.126(2004), p.285–291.

Google Scholar

[10] P. D.Wu, K.W. Neale, E.Van der Giessen: Materials Science and Engineering: A, Vol.346(2004), p.182.

Google Scholar

[11] P. D.Wu, A. Graf, S. R. MacEwen, D.J. Lloyd: Int. J. Solid Struct., Vol.42(2005), p.2225.

Google Scholar

[12] K.Yoshida, T.Ishizaka, M. Kuroda: Acta Mater., Vol. 55(2007), p.4499.

Google Scholar

[13] F. Roters, P. Eisenlohra, L. Hantcherlia: Acta Mater, Vol.58 (2010), p.1152.

Google Scholar

[14] G. I. Taylor, C.F. Elam: Proceedings of the Royal Society, London, Vol. 102 (1923), p.643.

Google Scholar

[15] R. J. Asaro, A. Needleman: Acta Metall, Vol. 33(1985), pp.923-953.

Google Scholar

[16] D. Peirce, R. J. Asaro, A. Needleman: Acta Metall., A. Vol.31 (1983), p.1951.

Google Scholar