Comparison of the Hyperbolic Perturbation Method and the Hyperbolic Lindstedt-Poincaré Method for Homoclinic Solutions of Self-Excited Systems

Article Preview

Abstract:

The comparison of the hyperbolic perturbation method and the hyperbolic Lindstedt-Poincaré method for homoclinic solutions of self-excited systems is studied in this paper. The homoclinic solution of a generalized Van del Pol system with strongly quadratic nonlinearity is analytically derived by both of the methods. The critical value of the bifurcation parameter under which homoclinic trajectory forms can be determined by the both of the perturbation procedures. Typical numerical examples are studied in detail and compared to illustrate the accuracy and the efficiency.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

411-415

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, USA 1983).

DOI: 10.1007/978-1-4612-1140-2

Google Scholar

[2] S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, USA 1990).

Google Scholar

[3] A.H. Nayfeh, B. Balachandran: Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods (Wiley, USA 1995).

Google Scholar

[4] J.B. Li, H.H. Dai: On the study of singular nonlinear traveling wave equation: dynamical system approach (Science Press, China 2005).

Google Scholar

[5] A.F. Vakakis: J. Sound and Vibration Vol. 170 (1994), p.119.

Google Scholar

[6] Z. Xu, H.S.Y. Chan, K.W. Chung: Nonlinear Dynamics Vol. 11 (1996), p.213.

Google Scholar

[7] H.S.Y. Chan, K.W. Chung, Z. Xu: J. Sound and Vibration Vol. 206 (1997), p.589.

Google Scholar

[8] M. Belhaq: Nonlinear Dynamics Vol. 18 (1999), p.303.

Google Scholar

[9] M. Belhaq, F. Lakrad: Chaos Solitons & Fractals Vol. 11 (2000), p.2251.

DOI: 10.1016/s0960-0779(99)00144-7

Google Scholar

[10] S. H. Chen, Y. K. Cheung: Nonlinear Dynamics Vol. 12 (1997), p.199.

Google Scholar

[11] M. Belhaq, B. Fiedler, F. Lakrad: Nonlinear Dynamics Vol. 23 (2000), p.67.

Google Scholar

[12] Y. V. Mikhlin: J. Sound and Vibration Vol. 230 (2000), p.971.

Google Scholar

[13] Y.V. Mikhlin, G.V. Manucharyan: Chaos Solitons & Fractals Vol. 16 (2003), p.299.

Google Scholar

[14] Q. Zhang, W. Wang, W. Li: Chinese Phys. Lett. Vol. 25 (2008), p. (1905).

Google Scholar

[15] Y. M. Zhang, Q. S. Lu: Communications in Nonlinear Science and Numerical Simulation Vol. 8 (2003), p.1.

Google Scholar

[16] Y.Y. Cao, K.W. Chung, J. Xu: Nonlinear Dynamics Vol. 64 (2011), p.221.

Google Scholar

[17] S.H. Chen, Y.Y. Chen, K.Y. Sze: J. Sound and Vibration Vol. 322 (2009), p.381.

Google Scholar

[18] Y.Y. Chen, S.H. Chen: Nonlinear Dynamics Vol. 58 (2009), p.417.

Google Scholar

[19] Y.Y. Chen, S.H. Chen, K.Y. Sze: Acta Mechanica Sinica Vol. 25 (2009), p.721.

Google Scholar

[20] S. H. Chen, Y.Y. Chen, K.Y. Sze: SCIENCE CHINA: Tech. Scis. Vol. 53 (2010), p.692.

Google Scholar

[21] M. Abramowitz, I. A. Stegun: Handbook of Mathematical Functions (Dover, USA 1972).

Google Scholar

[22] J. H. Merkin, D. J. Needham: Acta Mechanica Vol. 60 (1986), p.1.

Google Scholar