Dynamic Characteristics of Single-Layer Spherical Aluminum Alloy Reticulated Shell

Article Preview

Abstract:

Comparative analyses of dynamic characteristics between two aluminum alloy single-layer spherical shells, which have the same span, same rise-span ratios and same bars but different material characters of elasticity and visco-elasticity, are presented. Influences about material viscosity on vibration behaviors of single-layer spherical aluminum alloy reticulated shells are illustrated. The results show that: there are great differences between the resonance frequencies of two shells but the linear harmonic response properties are basically the same; the dynamic characteristics of these two shells are greatly different under harmonic loads or seismic loads, and the dynamics characteristics are greatly influenced by the viscous properties of the material itself.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1154-1158

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Zhou, and X. Liu, Theory of viscoelasticity[M], Press of University of Science and Technology of China, He Fei, China, 1996 (In Chinese).

Google Scholar

[2] T.Y. e. al, Theory and application of viscoelasticity[M], Science Press, Bei Jing China, 2004 (In Chinese).

Google Scholar

[3] X. Zhaodong, L. Aiqun, and Y. Jihong, Study and development on earthquake mitigation controlof long_span spatial reticulated shell structure[J]. Journal of  Vibration and Shock 24 (2005): 59-61 (In Chinese).

Google Scholar

[4] Li Yuanping. Dynamic Characteristics of nonlinear viscoelastic structures and seismic control of long span space shells [D]. Jinan University PHD Thesis, 2010 (In Chinese).

Google Scholar

[5] Rossikhin, Y. A., Shitikova, M. V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results [J]. Applied Mechanics Reviews, 2010. 63(1): 1-52.

DOI: 10.1115/1.4000563

Google Scholar

[6] Yang, Pan, Lam, Yee Cheong, Zhu, Ke-Qin. Constitutive equation with fractional derivatives for the generalized ucm model [J]. Journal of Non-Newtonian Fluid Mechanics, 2010. 165(3-4): 88-97.

DOI: 10.1016/j.jnnfm.2009.10.002

Google Scholar

[7] Vilela Mendes, R. A fractional calculus interpretation of the fractional volatility model [J]. Nonlinear Dynamics, 2009. 55(4): 395-399.

DOI: 10.1007/s11071-008-9372-0

Google Scholar