Effect of Crushed Rock Layer Width on Natural Convection Cooling of Highway Embankment in Permafrost Regions

Article Preview

Abstract:

For the construction of the proposed Qinghai-Tibet Express Highway in permafrost regions, it will be necessary to use the new technique of cooling the ground temperature by the coarsely crushed rock layer with a low fines content. The heat convection governing equations based on airflow function in variable permeability porous crushed rock layer are derived. Comparison of the cooling capability of winter-time natural convection in the crushed rock highway embankments with various widths of crushed rock layer and an air-permeable side slope surface were studied using a finite element method. The result indicates that the cooling capability of natural convection within the crushed rock highway embankment with a crushed rock layer width of 12 m is stronger than that with a crushed rock layer width of 10 m. Under the same temperature and pressure boundaries, the storage of cold energy in the foundation soils below the wider crushed rock highway embankment due to natural convective heat transfer is larger than that below the narrower one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1638-1643

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.J. Jin, Z. Wei, S.L. Wang, Q.H. Yu, L.Z. Lu, Q.B. Wu and Y.J. Ji: Eng. Geol. Vol. 101(3-4) (2008), p.96.

Google Scholar

[2] G.D. Cheng, Z.Z. Sun and F.J. Niu: Cold Reg. Sci. Technol. Vol. 53 (3) (2008), p.241.

Google Scholar

[3] W. Ma, G.L. Feng, Q.B. Wu and J.J. Wu: Cold Reg. Sci. Technol. Vol. 53 (3) (2008), p.259.

Google Scholar

[4] B.X. Sun, X.Z. Xu, Y.M. Lai, D.Q. Li, S.J. Wang and J.Z. Zhang: Cold Reg. Sci. Technol. Vol. 38 (2-3) (2004), p.219.

Google Scholar

[5] B.X. Sun, X.Z. Xu, Y.M. Lai and M.X. Feng: Cold Reg. Sci. Technol. Vol. 42(2) (2005), p.120.

Google Scholar

[6] B.X. Sun, L.J. Yang and X.Z. Xu: Cold Reg. Sci. Technol. Vol. 48(3) (2007), p.218.

Google Scholar

[7] B.X. Sun, L.J. Yang, Q. Liu, W. Wang and X.Z. Xu: Cold Reg. Sci. Technol. Vol. 57(2-3) (2009), p.131.

Google Scholar

[8] B.X. Sun, L.J. Yang, Q. Liu and X.Z. Xu: Eng. Geol. Vol. 114(3-4) (2010), p.181.

Google Scholar

[9] Y.M. Lai, S.J. Zhang, L.X. Zhang and J.Z. Xiao: Cold Reg. Sci. Technol. Vol. 39 (1) (2004), p.67.

Google Scholar

[10] M.Y. Zhang, Y.M. Lai and Y.H. Dong: Cold Reg. Sci. Technol. Vol. 59 (1) (2009), p.19.

Google Scholar

[11] T.T. Zhang, H.W. Baker, G.D. Cheng and Q.B. Wu: Cold Reg. Sci. Technol. Vol. 53 (3) (2008), p.229.

Google Scholar

[12] D.J. Goering: J. Cold Regions Eng. Vol. 17(3) (2000), p.119.

Google Scholar

[13] M. Lebeau and J.M. Konrad: Comput. Geotech. Vol. 36 (3) (2009), p.435.

Google Scholar

[14] Y. Chataigner, L. Gosselin and G. Doré: Int. J. Therm. Sci. Vol. 48 (6) (2009), p.1151.

Google Scholar

[15] A.S. Jørgensen, G. Doré, E. Voyer, Y. Chataigner and L. Gosselin: Cold Reg. Sci. Technol. Vol. 53 (2) (2008), p.179.

Google Scholar

[16] S. Saboundjian and D.J. Goering: Transport. Res. Rec. Vol. 1821(1) (2003), p.20.

Google Scholar

[17] S.M. Springman and L.U. Arenson, in: Recent advances in permafrost geotechnics, edited by D.L. Kane and K.M. Hinkel, volume 2 of Proceedings of the Ninth International Conference on Permafrost, Part VII, p.1685, University of Alaska Fairbanks (2008).

Google Scholar

[18] L.U. Arenson, H. -N. Pham, R. Klassen and D.C. Sego, in: Heat convection in coarse waste rock piles, volume 3 of Proceedings of the 60th Canadian Geotechnical Conference and 8th Joint CGS /IAH-CNC Groundwater Conference, p.1500, OttawaGeo2007 Organizing Committee (2007).

Google Scholar

[19] D.A. Nield and A. Bejan: Convection in porous media, 2nd ed (Springer-Verlag, New York 1999).

Google Scholar